
Speeding up Genetic Improvement via Regression Test Selection

GIOVANI GUIZZO, University College London, United Kingdom
DAVID WILLIAMS, University College London, United Kingdom
MARK HARMAN, University College London, United Kingdom
JUSTYNA PETKE, University College London, United Kingdom
FEDERICA SARRO, University College London, United Kingdom

Genetic Improvement (GI) uses search-based optimisation algorithms to automatically improve software with respect to both
functional and non-functional properties. Our previous work showed that Regression Test Selection (RTS) can help speed up
the use of GI and enhance the overall results while not affecting the software system’s validity. This article expands upon our
investigation by answering further questions about safety and applying a GI algorithm based on Local Search (LS) in addition
to the previously explored Genetic Programming (GP) approach. Further, we extend the number of subjects to 12 by analysing
five larger real-world open-source programs. We empirically compare two state-of-the-art RTS techniques combined with GP
and LS for these 12 programs. The results show that both RTS techniques are safe to use and can reduce the cost of GI by up to
80% and by 31% on average across programs. We also observe that both search-based algorithms impact the effectiveness gains
of GI differently, and that various RTS strategies achieve differing gains in terms of efficiency. These results serve as further
evidence that RTS must be used as a core component of the GI search process to maximise its effectiveness and efficiency.

CCS Concepts: • Software and its engineering → Software testing and debugging; Software performance; Genetic
programming.

Additional Key Words and Phrases: Genetic Improvement, Regression Test Selection, Search-Based Software Engineering

1 INTRODUCTION
Genetic Improvement (GI) involves using search-based techniques to automatically improve existing software prop-
erties [32]. The properties under improvement can be functional (e.g., bug fixing [1, 24, 41, 46]) or non-functional
(e.g., runtime [8, 23, 33], memory usage [35, 43], energy consumption [5, 6, 36]). The level of improvement of
a property is measured by a fitness function, which guides the search towards better software over multiple
iterations. At each iteration, the GI technique generates multiple software variants potentially better than the
original software w.r.t. the fitness function, but must preserve the desired software behaviour (i.e., pass the tests
in the software’s test suite). If a software variant fails any functional tests, it is deemed invalid.

Despite GI’s appealing benefit of automatically improving software properties, as one can infer, the process of
generating and testing many variants of a given software is computationally expensive [8, 29, 34, 40], especially
when the software has a costly test suite. Even for programs with relatively small test suites, GI executions can
take many hours or even days of computation [28]. One solution for this high cost is to select and execute only a

Authors’ addresses: Giovani Guizzo, University College London, London, United Kingdom, g.guizzo@ucl.ac.uk; David Williams, University
College London, London, United Kingdom, david.williams.22@ucl.ac.uk; Mark Harman, University College London, London, United Kingdom,
mark.harman@ucl.ac.uk; Justyna Petke, University College London, London, United Kingdom, j.petke@ucl.ac.uk; Federica Sarro, University
College London, London, United Kingdom, f.sarro@ucl.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2024 Copyright held by the owner/author(s).
ACM 1557-7392/2024/7-ART
https://doi.org/10.1145/3680466

ACM Trans. Softw. Eng. Methodol.

https://orcid.org/0000-0001-5361-2973
https://orcid.org/0009-0004-9828-2639
https://orcid.org/0000-0002-5864-4488
https://orcid.org/0000-0002-7833-6044
https://orcid.org/0000-0002-9146-442x
https://orcid.org/0000-0001-5361-2973
https://orcid.org/0009-0004-9828-2639
https://orcid.org/0000-0002-5864-4488
https://orcid.org/0000-0002-7833-6044
https://orcid.org/0000-0002-9146-442x
https://doi.org/10.1145/3680466
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3680466&domain=pdf&date_stamp=2024-07-23

2 • Guizzo et al.

subset of test cases relevant to the modifications made in the variant instead of executing the entire test suite. We
have shown in a preliminary work [16] that this can be achieved with the use of well-established Regression Test
Selection (RTS) techniques [45].

RTS has been extensively studied in the SE literature [45], with the primary purpose of selecting subsets of
tests from a test suite to allow for a more efficient regression test process. Such techniques typically determine
dependencies for tests (e.g., based on which parts of the source code they reach) and focus on selecting “affected
tests”, or tests dependent on the changes made in the program’s latest revision. RTS differs from Regression
Test Minimisation (which permanently removes redundant test cases from the test suite) and Regression Test
Prioritisation (which defines a test case order for testing) because it selects a subset of test cases for the imminent
testing task based on the context of the changes.

In our previous work [16], we hypothesised that existing RTS techniques can be powerful assets for improving
the effectiveness and efficiency of the whole GI process, and we carried out an empirical investigation on the effects
of RTS on the non-functional GI process by considering various contexts and trade-offs in different scenarios.
Our experiments consisted of three RTS techniques (one random, one dynamic, and one static technique), one GI
algorithm based on Genetic Programming (GP) [20], and seven real-world open-source projects from the Apache
Commons suite.1 Such investigation was crucial because, until then, we did not know the effects RTS had on the
effectiveness (i.e., to which extent it affected the capability of GI in finding better variants), efficiency (i.e., to
which extent it reduced the cost of GI more than it introduced overhead), and safety (i.e., to which extent the
generated variants deemed valid would still be valid when tested against the whole test suite) of GI. Our previous
work showed that RTS is not only safe, but can even significantly speed up the overall GI process by up to 68%.
Surprisingly enough, speeding up the GI execution also led to better-improved software variants because the
algorithm could spend the spared resources on finding new variants rather than executing unrelated tests.

However, our previous work did not address the usage of various GI algorithms, opting only to consider GP in
those experiments. Depending on the type of algorithm used to search for improved software variants, different
RTS techniques may be more suitable or display different outcomes. Moreover, although the Apache Commons
suite comprises many well-known and large software, there is still room for improvement in the generalisability
of our findings. In order to close these research gaps, in this paper, we extend our previous work by including
Local Search (LS) [4, 13, 19] as an additional GI algorithm as well as five larger open-source programs, making
a total of 12 real-world software investigated herein. This work does not only extend the type and number of
algorithms and programs, but also enriches our previous set of Research Questions (RQs) with new sub-questions,
which have been designed to comprehensively tackle all aspects involved with the multiple RTS techniques and
GI algorithms regarding safety, effectiveness and efficiency, as well as trade-offs encountered in the GI process.
By answering these questions, we aim to present a more detailed overview of the benefits and drawbacks of each
RTS technique in the context of non-functional GI using different types of search algorithms.

Our results show that both state-of-the-art RTS techniques we employed (Ekstazi [14] for dynamic RTS and
STARTS [27] for static RTS) are safe to use in conjunction with GI. Ekstazi successfully selected all fault-revealing
test cases in all of its 480 independent GI executions, while STARTS neglected a fault-revealing test case only
once out of its 440 runs. Considering effectiveness, roughly half of the time (54.4%), GI with RTS maintained the
same level of program variant runtime improvement as GI without RTS. Further, RTS even provided a benefit
(a better level of improvement relative to that of the average variant generated without RTS) in 30.4% of cases.
However, its impact on GI efficiency is where RTS truly shone in our results, where we found that RTS could
reduce the cost of the entire process by up to 80% for some programs, providing a significant speed up in 83.3%
of cases. Ekstazi provided a median execution time reduction of 31%, whereas that of STARTS was only 6%.
Across our entire experimentation, the cost of GI+Ekstazi was less than half of GI, saving over six weeks (or

1https://commons.apache.org/

ACM Trans. Softw. Eng. Methodol.

https://commons.apache.org/

Speeding up Genetic Improvement via Regression Test Selection • 3

1 000 hours) of computational resources. This observation, combined with our safety and effectiveness findings,
makes us believe that RTS is essential for a more sustainable GI. Additionally, we noted which factors influence
GI performance more significantly when analysing impacts on effectiveness and efficiency. For instance, we
found that effectiveness results depended more on the search algorithm in use, while switching RTS techniques
had the greatest impact on efficiency. Finally, our work presents the trade-offs of adopting each algorithm-RTS
combination. While we determined that GI+Ekstazi using GP was our recommendation as the most balanced in
trade-offs for most scenarios, we provide insights allowing engineers to choose which combination would best
suit their needs based on priorities such as best improvement, fastest improvement, and diversity of program
variants generated by the GI process.

In summary, the main contributions of this paper are:

• Large-scale experimentation with 12 open-source software, three RTS techniques, and two state-of-the-art
GI search algorithms.

• Comprehensive quantitative and qualitative result analysis, comparing algorithms and RTS techniques
with three different metrics and two statistical tests.

• Answers to multiple RQs designed to evaluate the impact of RTS on GI from many application angles.
• Provision of our GI and RTS source code as an open-source software available at: https://github.com/

gintool/gin.
• Provision of a replication package, available at: https://figshare.com/s/52a5092425c64648467e

2 BACKGROUND
This section presents the background on the two main topics of this paper: RTS and GI.

2.1 Regression Test Selection
Regression Testing concerns assessing whether the software’s pre-existing behaviour is impaired by a given
change [45]. Conventionally, the software is tested against its entire test suite whenever a new change is performed.
However, as the test suite grows in complexity and size, the cost of such re-testing becomes infeasible. To avoid
the re-execution of the whole test suite and consequently speed up the regression testing process, researchers
have proposed many regression testing strategies [45]. Among these strategies, the most common are test suite
minimisation, test case prioritisation, and test case selection.

Test suite minimisation aims to permanently remove irrelevant, redundant, or obsolete test cases from the test
suite. Test case prioritisation focuses on re-ordering the test cases during their execution such that faults are
detected earlier in the testing process. Finally, Regression Test Selection (RTS) techniques select only a subset
of test cases to execute when a new change to the software is performed. The main goal of RTS is to avoid the
execution of test cases that are unable to reveal faults in the modified code. Unlike test suite minimisation and
test case prioritisation, RTS relies on information about the changes made between software versions (or variants,
in the context of this work). As this work focuses on RTS, the following presents it in more detail.

According to Yoo and Harman [45], an RTS technique must select a subset of test cases) ′ from the whole test
suite) that contains all available test cases able to reveal faults in a given program variant ?′ of the original
program ? . A test case C is fault revealing in relation to ? and ?′ if C yields different outputs for both versions
(C (?) ≠ C (?′)), meaning C needs to be executed against both variants. Assuming that C (?) halted and produced
the correct result, C will only be able to reveal a fault in ?′ if C traverses the modified code of ?′ or used to
traverse a now deleted piece of code in ?′. Therefore, if an RTS technique selects all available test cases in) that
traverse modifications in ?′, then such a technique is called safe. In other words, an RTS technique must avoid
the execution of irrelevant test cases in relation to the modifications performed in the software. In the context of
this work, a “relevant” test case should i) traverse the modified code, ii) create a state of error in the SUT, and

ACM Trans. Softw. Eng. Methodol.

https://github.com/gintool/gin
https://github.com/gintool/gin
https://figshare.com/s/52a5092425c64648467e

4 • Guizzo et al.

iii) reveal this erroneous state as a failed assertion. A test case may be considered irrelevant if it fails to meet
any of these three conditions. However, due to the difficulty of checking the second and third conditions, RTS
tools typically only select tests based on the first requirement. Thus, the RTS techniques used in this work select
affected tests (those transitively dependent on the modified code) rather than relevant ones.

In this paper, we employ three RTS techniques: a random selection technique, a modification-based technique
using dynamic analysis, and a firewall approach based on static analysis [45]. The random technique selects test
cases at random without any additional information and is only used as a baseline. The dynamic approach is
implemented by the Ekstazi tool [14], while the firewall one is implemented by the STARTS tool [27]. Ekstazi
implements a three-phase process to select affected test cases. The first phase (analysis) involves discarding
unaffected tests by considering each test class and seeing whether all of its dependent classes’ checksums have
remained the same since the previous execution. If a test class meets this condition, it is not selected for testing.
The second phase (execution) runs the remaining tests. The third phase (collection) can be done in parallel to the
second or sequentially at a later point, and involves instrumenting the bytecode and recording which classes are
accessed when each test case is executed. Ekstazi computes the checksum for the list of files associated with each
test class and stores it alongside the dependencies for the next analysis phase.

Conversely, STARTS [27] employs a static approach for RTS based on the concept of class firewalls. A class
firewall for a given class� is the set of classes that could be affected if� is modified [22]. STARTS computes class
firewalls using a type-dependency graph (TDG), delimiting which types need to be retested after a code change.
Type dependencies are determined using the constant pool for each classfile, and the TDGs are constructed from
this data in a type-to-test dependency file. To select impacted tests, STARTS uses the same checksum function as
Ekstazi to check whether any types have been modified and returns the set difference between the latest test
suite and the set of test cases not associated with the changed types. Similarly to Ekstazi, the TDG computation
phase for the following execution can be run either in parallel to the other steps or later.

We selected these tools for our experiments as both have been extensively evaluated in literature [7, 16, 26,
37, 38, 47] and have shown to produce safe results with low execution costs. For example, Chen and Zhang [7]
used RTS tools to speed-up Mutation Testing and have shown that both tools are able to select the appropriate
test cases for a given mutant. In our preliminary work [16], we followed this intuition that RTS can be used for
more than just Regression Testing. We applied RTS within the GI process and obtained conclusive evidence of
the benefits it can provide in such a context.

2.2 Genetic Improvement and Efficiency
Genetic Improvement (GI) consists of using search-based techniques to improve the properties of an existing
software [32]. Search-based algorithms use intelligent heuristics to search for approximate solutions for a given
problem when the exact optimum solution cannot be found in a feasible time [13]. GI is part of the more general
field of Search-Based Software Engineering (SBSE) [18], which aims to solve hard software engineering problems
through the application of search algorithms.

During the GI optimisation process, a search algorithm searches for software transformations (i.e., patches)
that can improve a set of functional or non-functional software properties. Functional improvement is usually
associated with Automated Program Repair (APR) [12, 29, 34], which consists of, as the name implies, searching
for transformations that can repair faults in a program. Non-functional improvement, on the other hand, focuses
on finding transformations that maintain the functional behaviour of the software while also improving properties
such as memory usage [35, 43], execution time [8, 23, 33], energy consumption [5, 6, 36], and others. In both cases,
the functional behaviour of software is measured by the test suite, i.e., if all test cases pass after the transformation,
then the GI algorithm assumes that the existing behaviour is maintained. Test case execution is also used as a
source of information for the non-functional properties, e.g., test case execution time being used as a measure of

ACM Trans. Softw. Eng. Methodol.

Speeding up Genetic Improvement via Regression Test Selection • 5

runtime improvement. All of this information is incorporated into a “fitness function” that guides the search
process toward solutions that are more fit for solving the given problem.

In non-functional GI, each iteration results in a set of patches, which are then used to attain new software
variants that are potentially better than the original w.r.t. fitness function measurement. As previously mentioned,
such variants are executed against the test suite to gather execution information and compute the fitness. Since
the search process is stochastic and based mainly on trial and error (a variant can be worse than the original
program), the search for software variants is performed throughout numerous iterations, each imposing the cost
of executing the test suite against the candidate solutions. As one can infer, the cost of such a process quickly
becomes prohibitive, especially when the test suite is computationally expensive [16, 29, 34].

In order to speed up the GI process, some tools [4] already implement a few strategies, such as in-memory
compilation that removes the writing and reading of source files before compiling. Another common strategy
is to specifically target only relevant methods and classes, e.g., APR tools usually trace failing test cases and
only focus on repairing classes that the test cases reached. On the other hand, non-functional GI tools perform
profiling in a preliminary step to find costly pieces of code to improve. Nevertheless, such tools still can take
several hours or days of execution, even for relatively small programs [25, 28].

As shown in our previous work [16], selecting fewer test cases during the evolutionary process is a viable
way of further reducing the cost of evaluating programs. In this study, we performed an initial evaluation of the
impact of RTS on multiple GI aspects, such as effectiveness, efficiency, safety, and the trade-off an engineer has to
face when choosing an RTS technique. However, there are still a few unanswered questions in this context, such
as:

(1) How do RTS techniques behave with different types of GI algorithms?
(2) Which GI algorithms can benefit the most from RTS cost reduction?
(3) Which GI algorithms provide the most cost-effective search when using RTS?

The following section describes how we enhanced GI to use RTS and presents the main challenges and benefits.

3 PROPOSED GI WITH RTS APPROACH
The findings of our previous study [16] indicated that incorporating RTS in the GI process has the potential
to dramatically reduce computational resource requirements, saving more than a third of the execution time
during experiments compared to GI without RTS (from 180 hours to 116 hours). We adopt a similar approach
in this work, intending to further investigate GI performance with RTS and which factors are most impactful.
For our experiments, we use Gin [4], a GI tool for the improvement of Java programs. Gin has two main phases:
profiling and optimisation. Figure 1 presents the general process of applying Gin with all its phases and which
additional features we implemented to enable the usage of RTS. Essentially, the RTS techniques are incorporated
as part of Gin’s profiling phase, allowing the RTS tools to determine which tests are relevant to execute when
targeting different methods for non-functional improvement. Thus, when Gin generates and develops program
variants, these are evaluated using the subset of test cases selected by the RTS tools (as opposed to the entire test
suite). For an in-depth description of Gin’s approach to GI without RTS, please refer to its introductory paper
by Brownlee et al. [4]. The following subsections will describe each of the major phases in Gin and how these
phases are affected by the integration of RTS strategies.

3.1 Profiling
In the initial phase, profiling, the main goal is to capture execution information about test cases and tested
methods from the unmodified program ? . This is a one-time operation where ? is compiled, and the entire test
suite) is executed. During its execution, Gin uses either Java Flight Recording (JFR) or hprof (used in this work)
to sample which methods are executed during testing. Specifically, Gin records each tested class and method,

ACM Trans. Softw. Eng. Methodol.

6 • Guizzo et al.

Fig. 1. GI process of the Gin tool and proposed steps to allow the usage of RTS

which tests were used for profiling, the number of times a method was executed by the tests, and the execution
time of the entire profiling procedure. From this sampling, it generates a list of methods and assigns a list of
associated test cases to each method. This execution information is stored in a CSV file for use in the second
phase (optimisation). Further, Gin identifies “hot methods”, i.e., costlier methods in terms of execution time that
are more likely to benefit from the GI optimisation. Without RTS, the resulting CSV file contains a list of all test
cases related to all methods identified by JFR or hprof.

Since most RTS techniques [14, 27] require a complete execution of the test suite) before performing test
case selection, we incorporate the RTS techniques during Gin’s profiling phase. For Ekstazi (dynamic RTS), the
tool’s Java agent is incorporated during the testing phase of Gin’s profiling. This allows Ekstazi to collect detailed
information from the test case execution traces, but also makes it compulsory to execute the entire test suite
at least once during profiling. In the case of STARTS (static RTS), Gin includes the Abstract Syntax Tree (AST)
analysis during build time. Unlike Ekstazi, STARTS using static analysis means test suite execution during the
profiling phase is not required. Since both RTS tools generate their output in proprietary formats, Gin captures
their results and parses them to a standardised format (identical to that of the CSV files generated without RTS)
before concluding the profiling phase. The result is a reduced test set) ′ ⊆) for each hot method, specifically
tailored to avoid the execution of unaffected test cases that would not be able to reveal faults in a method,
given that it is modified during the GI process. This information about the combination of hot methods-test sets
replaces the original trace information of Gin. It should be noted that Ekstazi and STARTS have different levels of
granularity than Gin’s profiling phase when selecting test cases. Gin functions at a method level, while STARTS
and Ekstazi can only associate test cases at a class level. Gin handles this mismatch in granularity conservatively
by assigning all tests selected for a given class to each of its methods.

3.2 Optimisation
The second phase, optimisation, consists of the actual GI process, where a given algorithm searches for program
variants (% ′). Gin focuses on optimising one method at a time, usually the costliest one identified in the profiling
phase.

The first step is to generate a random initial population % ′ of program variants (solutions). Gin works with a
patch representation (chromosome) for the solutions, i.e., it searches for patches that modify the original program
? to transform it into a potentially improving variant ?′ ∈ % ′. The patch is represented by a sequence of edits

ACM Trans. Softw. Eng. Methodol.

Speeding up Genetic Improvement via Regression Test Selection • 7

(genes) containing the edit operation and targeted code statement. The available edit types are: i) Delete – deletes
a statement; ii) Copy – copies a statement; iii) Replace – replaces a statement with another existing one; and iv)
Swap – swaps two existing statements. Hence, each initial solution ?′ consists of a patch with a single random
edit to the original program.

The second step is to run the test suite) on all solutions ?′ ∈ % ′. Since a patch cannot be executed against the
test suite, Gin first applies the patch to the code, performs an in-memory compilation of the modified source
code, and then executes the test suite against the modified program. If an RTS technique is used during the
optimisation phase, instead of running all test cases in) , Gin uses the reduced test set) ′ selected specifically for
the method under improvement. The results of the test case execution are stored and used in the next step, the
fitness evaluation.

Since we focus on the non-functional improvement of runtime execution, the fitness function is the difference
in execution time between the original program ? and the program variant ?′ using the test suite) :

↑ 5 8C=4BB (?′,)) = AD=C8<4 () (?)) − AD=C8<4 () (?′)) (1)

When an RTS technique is being used, Gin uses the runtime of the reduced test set) ′ to perform the fitness
evaluation:

↑ 5 8C=4BB_ACB (?′,) ′) = AD=C8<4 () ′ (?)) − AD=C8<4 () ′ (?′)) (2)
The original program is also tested against) ′ as it would be misleading to compare the runtime of the entire

test suite) for ? and that of) ′ for ?′. The objective of the optimisation is to find the variant ?′ that maximises
this function. If the program variant ?′ does not pass the test cases (i.e., it contains a fault due to the patch applied
to the code), Gin assigns it the maximum possible value (Double.MAX_VALUE) as its execution time, resulting in
very low fitness value for ?′ according to Equation 2. This mechanism guides the GI algorithm towards programs
that maintain the functional behaviour of the software since a fast but faulty program is undesirable in the context
of non-functional GI. Additionally, if Gin is unable to find any test-passing variants, it simply outputs the original
program.

Next, Gin starts the iterations (generations) and continues until the stopping criterion is met, which is a fixed
number of generations set as a parameter by the engineer. In each generation, the first step is to perturbate
the solutions in the population % ′ and generate a new offspring population % ′′. This step is where the search
algorithms implemented in Gin differ.

The Genetic Programming (GP) [20] algorithm is based on Genetic Algorithms (GA) [9] and performs two
perturbations, crossover and mutation, to generate an offspring population % ′′ of size |% ′ |. Gin uses its own
version of the Uniform Crossover operator [15] to generate new solutions. First, it selects two parent solutions
?′1 and ?′2 from % ′. Then each edit (gene) has a given probability 0 < U ≤ 1 of being copied from ?′1 to the first
child ?′′1 and from ?′2 to the second child ?′′2 , in the order they appear in the parents. Then, the edits of the other
parent are copied to the other child with the same probability U . After performing the crossover, Gin applies the
mutation operator with a given probability 0 < V ≤ 1 to the children % ′′ to introduce new random edits. The goal
of the crossover operator is to carry genetic information from the parents to the children, whereas the mutation
operator is used to introduce diversity into the population.

Unlike GA, the Local Search (LS) algorithm [4, 13, 19] does not use crossover, but rather a more simplistic
approach to generate an offspring population % ′′ of size one. Starting from the best solution ?′ ∈ % ′ found so far,
it mutates ?′ to generate a single solution ?′′. It works by searching for “neighbour” solutions ?′′ of the best
one ?′, instead of generating offspring from the global population % ′, hence the name “local”. The advantage is a
more exploitative strategy, which can be effective in complex problems such as non-functional GI.

Regardless of how the solutions are generated, whether with GP or LS, the next step is to execute the test cases
on the newly generated offspring population % ′′. Similarly to the initial population evaluation, each solution
?′′ ∈ % ′′ is executed against the entire test suite) or against the test case subset) ′ when an RTS technique is

ACM Trans. Softw. Eng. Methodol.

8 • Guizzo et al.

used. The execution information is then used to compute the fitness of all ?′′ ∈ % ′′. After the fitness evaluation,
the replacement operation occurs, which joins both % ′ and % ′′ and selects the best solutions in the union to
survive and become parents (% ′) in the next generation. When the stopping condition is met, Gin outputs the
best variant ?′ w.r.t. the fitness function.

3.3 Validation Phase
When using RTS, one must perform an additional procedure in order to validate whether the RTS technique
discarded important tests that could reveal faults in the program variants. In other words, since we only use a
subset of test cases) ′ of) during the optimisation phase, it may be the case that a program variant deemed as
valid during optimisation (passes) ′) is in fact faulty (does not pass)). To achieve this, we re-execute all the valid
program variants found during optimisation against the entire test suite) and record the results. During this
step, we also record the real improvement obtained in relation to) and the execution time needed to perform
this task.

In this paper, we conduct extensive experimentation to assess how feasible our proposed approach is, taking
into account the safety and other effects RTS techniques may have in the context of GI. The following section
details the Research Questions (RQs) used to guide the experimentation of our work.

4 RESEARCH QUESTIONS
The experiments of this work are designed to answer the following Research Questions (RQs):

RQ1. Safety: How safe is RTS in the context of non-functional GI?
RQ1.1. RTS Comparison: How safe are different RTS techniques?
RQ1.2. Algorithm Comparison: How does RTS technique safety impact the output of different GI
algorithms?

RQ2. Effectiveness: How does the use of RTS impact the effectiveness of non-functional GI?
RQ2.1. RTS Comparison: How is GI effectiveness affected by different RTS techniques?
RQ2.2. AlgorithmComparison:How do different GI algorithms benefit from RTS in terms of effectiveness?

RQ3. Efficiency: What is the efficiency gain when using RTS with GI?
RQ3.1. RTS Comparison: How is GI efficiency affected by different RTS techniques?
RQ3.2. Algorithm Comparison: How do different GI algorithms benefit from RTS in terms of efficiency?

RQ4. Trade-Off: What is the trade-off between efficiency and effectiveness of the GI process with various RTS
strategies in different application scenarios?

Since we use multiple algorithms and RTS techniques in our experimentation, we also aim to analyse the
different application contexts in more depth. Therefore, for all RQs, we create sub-RQs to compare the algorithms’
performance and whether these results vary with different combinations of RTS and algorithm types. Furthermore,
we analyse the results in terms of software variant runtime improvement. Thus, non-functional GI is hereby
defined as GI for runtime improvement during software execution. In the following subsections, we describe and
motivate each RQ in the context of our work.

4.1 RQ1. Safety
How safe is RTS in the context of non-functional GI? – This question is designed to evaluate the safety of the RTS
techniques when used in conjunction with GI. As defined in Section 2, an RTS technique is considered “safe” if it

ACM Trans. Softw. Eng. Methodol.

Speeding up Genetic Improvement via Regression Test Selection • 9

selects all the test cases from the test suite that can reveal the potential faults in the modified program. In this
context, we are concerned that the RTS techniques may discard affected test cases that could reveal a fault in
a given program variant. If this is the case, the GI algorithm will wrongfully deem faulty program variants as
functionally adequate due to the RTS technique failing to select important test cases, rendering its application
infeasible in practice. Thus, after finishing the evolutionary process of GI with the reduced test set, we execute
the best obtained variants against the entire test suite to check for faults, as described in Section 3.3.

It is important to note that, although the test suite is a crucial indicator of the presence of faults in a given
program, it cannot prove the absence of faults, i.e., the program’s correctness [10]. This is discussed further
in Section 7. Hence, herein, safety is defined as the adequacy of the program w.r.t. the expected behaviour
represented by the entire test suite, rather than the correctness of the program. This concept of adequacy also
extends to the use of the term “valid” throughout this text. A given program variant ?′ is valid if it passes all test
cases in the original program ? test suite) .

In order to measure the level of safety of a given RTS technique, we define the “Relative Safety” (RS) measure
as follows:

↑ '((?′,)) = |?0BB8=6() (?′)) |
|) | (3)

where |) | is the number of test cases in the test suite) of a program ?; and |?0BB8=6() (?′)) | is the number of
passing test cases in) when executed against a given program variant ?′ of ? . In other words, this measure
calculates the percentage of test cases in the entire test suite) that pass when executed against a given program
variant ?′. Therefore, the greater the RS, the safer the technique is.

Such variant ?′ is obtained from the GI algorithm execution, which is the best (greatest fitness) adequate
variant (passes all test cases selected by the RTS technique) found during the evolutionary process. The only
(reasonable) assumption for RS is that all tests in) pass when executed against ? . This is a common pre-requisite
in non-functional GI [4, 16], since the GI algorithm may not yield valid variants if the original program is faulty.

In order to answer sub-RQs 1.1 (how safe are different RTS techniques?) and 1.2 (how does RTS technique
safety impact the output of different GI algorithms?), we compare the results by RTS strategy and by algorithm
used respectively. The objective is to unveil differences in the impact of RTS by the multiple techniques used in
our experiments. We answer each sub-RQ individually alongside the more general RQ answer.

4.2 RQ2. Effectiveness
How does the use of RTS impact the effectiveness of non-functional GI? – We further analyse the experiment results
to unveil the potential effects of using RTS on the improvement capabilities of GI. In other words, we want to
analyse to what extent the RTS techniques affect the final non-functional improvement in runtime obtained by
the GI algorithms. Since the RTS techniques aim to speed up the evolutionary process, and the fitness function
precisely measures the speed up of program variants, we expect to find results significantly different from the
conventional GI process without RTS. To this end, we define the “Relative Improvement Change” (RIC) measure
as follows:

↑ '�� (?′,)) = AD=C8<4_8<?A>E4<4=C () (?′, ?))
AD=C8<4_8<?A>E4<4=C_0E6() (% ′′, ?)) (4)

where AD=C8<4_8<?A>E4<4=C () (?′, ?)) is the runtime improvement (fitness value) of a valid variant ?′ obtained
by GI with RTS compared to the runtime of the original program ? ; % ′′ is the set of all valid variants obtained from
the GI algorithm without RTS; and AD=C8<4_8<?A>E4<4=C_0E6() (% ′′, ?)) is the average runtime improvement
relative to ? for all variants ?′′ in % ′′:

AD=C8<4_8<?A>E4<4=C_0E6() (% ′′, ?)) = AD=C8<4_8<?A>E4<4=C () (?′′, ?))
|% ′′ | (5)

ACM Trans. Softw. Eng. Methodol.

10 • Guizzo et al.

This average improvement acts as a reference point to determine how RTS affects the (runtime) performance
of program variants obtained through GI. Thus, the greater the RIC value, the better, and for a given variant ?′,
an RIC value larger than one indicates ?′ performs better than a typical variant computed using GI without RTS.
All improvements are computed with the whole test suite) .

In summary, RIC measures the proportional improvement gain of a given variant ?′ compared to the average
improvement gain without RTS. Therefore, if RIC > 1.0, it means that the variant ?′ obtained using GI with
RTS has a better level of improvement on average than when not using RTS. If this is the case, then using RTS
enhances the improvement capabilities of GI. If RIC < 1.0, using RTS negatively impacts such capabilities.

Similarly to RQ1, we perform additional comparisons to answer sub-RQs 2.1 (how is GI effectiveness affected
by different RTS techniques?) and 2.2 (how do different GI algorithms benefit from RTS in terms of effectiveness?).
The objective is to check whether any RTS strategy (Ekstazi/STARTS) or search algorithm (LS/GP) is more
effective than their counterparts in the same setting.

4.3 RQ3 – Efficiency
What is the efficiency gain when using RTS with GI? – By answering this question, we intend to quantify the
speed-up gained from using the RTS techniques when executing two different GI algorithms, namely LS and
GP. As opposed to RQ2, this RQ focuses on the speed-up of the GI process itself rather than that of the software
variants obtained by the GI algorithm.

Although running fewer tests during the search process will intuitively provide some speed up, we want
to analyse whether the cost of the additional profiling steps (i.e., collecting the dependencies between source
files and test cases and performing test case selection for each identified hot method) incurred by the RTS tools
make their usage infeasible and, if not, what is the resulting speed up when taking this added cost into account.
In the context of our approach to non-functional GI with RTS (outlined in Section 3), we refer to the cost of
these additional profiling steps as the overhead of using the RTS techniques. These steps become increasingly
complex as program and test suite size increases, and the overhead may not be trivial when the program under
improvement is accompanied by many test cases and source files.

To evaluate the cost of the GI process with RTS, we used the “Relative Cost” (RC) metric, which is defined as
follows:

↓ '� (B, ?) = 2>BC (B (?)) + ?A> 5 8;8=6(B (?))
0E4A064_>A868=0;_2>BC (?) (6)

where 2>BC (B (?)) is the total execution time of the GI algorithm when using a given RTS strategy B to im-
prove program ?; ?A> 5 8;8=6(B (?)) is the cost of the profiling phase using strategy B when applied to ?; and
0E4A064_>A868=0;_2>BC (?) is the averaged cost across all runs when applying the same GI algorithm without RTS
on ? . As RIC (Section 4.2) is represented in relation to GI without RTS, a similar normalisation is applied for RC.
In summary, RC measures the cost (execution time) of the GI algorithm using a given RTS strategy B relative to
the same algorithm without RTS. Thus, the lower the RC, the greater the benefit RTS provides to the GI process
execution time.

If the RC value is greater than 1.0, then the RTS technique does not speed up the process; rather, it introduces
more costs during the profiling phase than time saved during optimisation, making it infeasible to use in practice.
However, if the result of RC is lower than 1.0, then it is possible to quantify the speed-up obtained by the strategy.
For example, an RC of 0.5 means that the GI process is twice as fast with RTS.

Similarly to RQs 1 and 2, we perform additional comparisons in order to answer sub-RQs 3.1 (how is GI
efficiency affected by different RTS techniques?) and 3.2 (how do different GI algorithms benefit from RTS in
terms of efficiency?). These are required since we expect different RTS strategies to yield different efficiency.
Moreover, the differences between GP and LS may also extend to the efficiency gained from each RTS technique,
as each algorithm may take advantage of the efficiency gains provided by the RTS techniques in different ways.

ACM Trans. Softw. Eng. Methodol.

Speeding up Genetic Improvement via Regression Test Selection • 11

4.4 RQ4 – Trade-Off
What is the trade-off between safety, efficiency, and effectiveness of the GI process with various RTS strategies in
different application scenarios?

Finally, RQ4 aims to answer whether different algorithms and RTS techniques weigh differently on specific
scenarios. This RQ sets the ground for a more practical view of the problem. In summary, we want to analyse
the results and provide guidelines to the engineer on how to choose GI algorithms and RTS techniques better
when faced with different priorities. Because no specific algorithm can be the best for all scenarios and must
compromise on its trade-offs [42], unveiling the magnitude of such trade-offs is crucial.

We created three trade-off scenarios that comprise three different priorities an engineer may have when
performing GI: i) Perfect Improvement (%improv); ii) Fast Improvement (�improv); and iii) Diverse Improvement
(�improv).

This first scenario concerns the Perfect Improvement, where the engineer deals with the best improved and
valid (passes all test cases) program variant. In other words, this scenario is dedicated to revealing which technique
can obtain the best software runtime improvement overall, regardless of how long it takes to execute GI. To
find out which technique obtains the perfect improvement, we compare their results in terms of raw runtime
improvement.

The second scenario, Fast Improvement, is when the engineer is concerned with finding a valid and improved
program variant as fast as possible in the search process. Here, the engineer will focus on finding any improved
and valid program variant and then stop the GI execution immediately to avoid wasting resources. In this case,
the level of improvement is not important as long as the overall runtime decreases. In order to find out which
technique can find improvements the fastest, we analyse at which time the first improved variant was found in
the search process.

The third and final improvement scenario is Diverse Improvement, where the engineer wants a wide gamma
of program variants to choose from. Having a diverse set of improved programs means the engineer can balance
their priorities, inspect the improved code, and make a more critical choice based on a qualitative analysis. For
example, a wide set of programs may allow the engineer to choose an improved program with fewer edits or
even compare the code of multiple variants to understand how their software’s runtime is positively affected.
In order to find the most diverse technique, we compute the number of improved variants found during the GI
process by each technique.

5 EXPERIMENTAL DESIGN
This section describes how we conducted our experiments to validate and analyse the proposed technique. For all
experiments, we used the Gin tool [4] (see Section 3 for more information on Gin’s functionality). A prior study
comparing 31 GI tools for non-functional improvement found Gin and PyGGI the most accessible tools to apply
to new software [48]. Gin was found to be easily configurable and natively supports local search and genetic
programming algorithms for GI. Combined with the fact that Gin is scalable to larger projects and that we used it
in our previous study [16], this made Gin a straightforward choice for use in these experiments. To allow for
reproducibility, we provide a replication package at https://figshare.com/s/52a5092425c64648467e.

5.1 GI Algorithms
To answer our RQs, we use two common GI algorithms [33] already implemented in Gin. As mentioned in
Section 3.2, we use Genetic Programming (GP) [20] and Local Search (LS) [4, 13, 19]. The former is the most
common algorithm in GI, consisting of a global search, focusing on both exploration and exploitation of the search
space, and is generally more expensive computationally. The latter focuses on a local search of neighbouring
software variants with fewer modifications, which is less expensive but can more often result in local optima.

ACM Trans. Softw. Eng. Methodol.

https://figshare.com/s/52a5092425c64648467e

12 • Guizzo et al.

LS was chosen for these experiments as it is readily available in Gin and has shown promising results in prior
research [2], demonstrating comparable, if not better, performance than GP across various improvement scenarios.
Since these algorithms perform the search differently, analysing their results can unveil further insights for
GI and RTS. They are each set to run for 10 generations with 40 individuals in the population. The mutation
probability is set to 50% and the crossover probability to 100% (GP only). The values for these parameters were
selected to remain consistent with our previous investigation [16], and are in line with prior studies using these
algorithms [11, 24, 28, 33] Each patch/software variant is run internally 10 times to account for runtime variations.

5.2 RTS Techniques
We consider two state-of-the-art RTS techniques, used both in research and in industry: Ekstazi [14] (dynamic
RTS) and STARTS [27] (static RTS). These are described in Section 2.1. We also include a random test case selection
as a sanity check. Namely, we compare the following strategies in our empirical evaluation:

• GI – Either GP or LS with no RTS (baseline);
• GI+Random – GI using a random test selection that selects a subset of test cases from the original test

suite without guidance;
• GI+Ekstazi – GI using Ekstazi (v5.3.0) as a dynamic analysis RTS technique;
• GI+STARTS – GI using STARTS (v1.3) as a static analysis RTS technique.

To answer questions about the efficiency of the RTS techniques, we compute the time taken for each algorithm-
RTS combination by summing the runtime needed for all GI steps, i.e., the time needed to profile the programs,
select test cases, and perform the search. Since all strategies share a common stopping criterion (number of
generations), we can compute how much time is needed to perform the same GI tasks.

5.3 Subject Programs
We compare the algorithms and techniques using 12 programs collected from related work [3, 16, 17, 28, 31].
Table 1 presents details about the subject programs. We selected these programs because they represent a diverse
set of domains, with different sizes, numbers of test cases, coverage values, and test times, which in turn enhances
the generalisability of our evaluation. The test time is the cost of running the program’s testing procedure using
Maven.

5.4 Experimental Procedure
Each algorithm is run for 20 independent runs on each program to account for the stochastic search process.
At the end of each independent run, the algorithm outputs a list of all program variants generated during the
search. The valid program variant with the best improvement score is selected for validation against the entire
test suite. The result of this validation is then used to compute the efficiency gain (RC – speed-up of the GI
process), effectiveness (RIC – improvement achieved by the variant compared to the average improvement from
GI without RTS), and safety (RS – how many test cases from the entire test suite fail on the variant).

The results of the independent runs are compared using the Kruskal-Wallis statistical test [21] and Vargha-
Delaney Â12 effect size [39]. The former is used to assess if the difference between the techniques is statistically
significant across many independent runs, whereas the latter measures the magnitude of the difference. Both
tests are non-parametric, meaning they do not assume a normal distribution of the data.

6 RESULTS
This section presents the results of our experiments and answers the RQs described in the previous section. Table 2
presents the number of test cases selected by each strategy for each program. This selection was performed in
the profiling phase (as explained in Section 3), and the time taken to complete this task is computed as overhead.

ACM Trans. Softw. Eng. Methodol.

Speeding up Genetic Improvement via Regression Test Selection • 13

Table 1. Subject programs. LLOC: number of logical lines of code (executable lines); #T: number of test cases in the
program’s test suite; T. LLOC: number of logical lines of test code; Cov: statement and branch coverage percentages obtained
by the test suite; Test Time: execution time of the test suite (mm:ss). The asterisk marks programs from the Apache suite.

Program LLOC #T T. LLOC Cov Test Time

codec-1.14* 9 044 1 081 13 276 96/91 00:15
compress-1.20* 25 978 1 170 22 059 84/75 01:39
csv-1.7* 1 845 325 4 864 89/85 00:06
fileupload-1.4* 2 425 82 2 284 80/76 00:04
gson-2.8.5 8 123 1 050 14 137 83/79 00:05
imaging-1.0* 31 320 583 7 427 73/59 00:52
jcodec-0.2.3 98 126 386 10 556 46/34 00:19
jfreechart-1.5.0 94 203 2 174 39 883 54/46 00:08
joda-time-2.10.14 29 895 4 239 56 404 89/81 00:11
spatial4j-0.9 6 950 466 3 954 79/74 00:09
text-1.3* 8 703 898 12 872 97/96 00:05
validator-1.6* 7 409 536 8 352 86/76 00:11

Table 2. Percentage of selected test cases from the entire test suite. The lower the percentage, the greater the reduction in
number of test cases. Best values are highlighted in bold. A dash represents a technical failure in selecting test cases.

Program GI+Ekstazi GI+STARTS GI+Random

codec 4.55 4.55 35.90
compress 4.52 16.92 67.94
csv 72.17 96.44 30.74
fileupload 39.51 41.98 53.70
gson 64.47 90.74 37.25
imaging 1.94 81.31 39.42
jcodec 2.55 0.46 47.11
jfreechart 13.83 39.62 41.62
joda-time 0.66 – 45.97
spatial4j 83.56 100.00 41.45
text 4.35 4.35 37.18
validator 15.89 29.53 45.42

Median 4.55 29.53 41.53

6.1 Answer to RQ1 – Safety
As mentioned in Section 5.2, the GI+Random technique is used as a baseline in this experiment. If a random
selection of test cases is as safe as others, it means that Ekstazi and STARTS cannot outperform a much simpler
strategy such as random, and their results can be attributed to chance.

Our results show that GI+Random failed to provide a safe selection of test cases for 43 out of 480 independent
runs (8.9%), i.e., the test cases selected by GI+Random cannot accurately detect bugs in the improved versions of
the software as well as the entire test suite in 8.9% of the cases. Using the RS measure, however, we observed

ACM Trans. Softw. Eng. Methodol.

14 • Guizzo et al.

that the RS (Equation 3) of GI+Random is always higher than 0.991, i.e., at most 0.9% of the test cases fail when
using a random RTS technique. This is due to the fact that most test cases do not actually reach the statements
modified by the GI algorithm, thus passing the validation step.

GI+STARTS executed mostly successfully without test cases failing, except for two cases: GI+STARTS with
GP for commons-text and GI+STARTS for joda-time (for both GP and LS). In the first case, one of the 20 GP
independent runs for that SUT generated an improved version that failed with the entire test suite. However,
only one out of 898 test cases failed in this scenario, yielding an RS result of 0.999, i.e., 99.9% of the test cases
passed. On the other hand, for joda-time, STARTS failed to select test cases altogether (as seen in Table 2). Since
STARTS works with static analysis and only captures test case relations with classes in compilation time, it could
not analyse joda-time’s dynamically loaded test suite, thus failing the 40 runs for that SUT (20 GP plus 20 LS
runs). All in all, from all 480 independent runs of GI+STARTS, 41 runs (8.5%) yielded an improved version for
which STARTS’ selection was unsafe or could not work. Disregarding its limitations with joda-time, this number
drops to 1 out of 440 runs, or 0.0023%.

Ekstazi, however, was able to perform the test selection for joda-time because it instruments all test cases and
class files of the projects, capturing execution information as they run. As a result of Ekstazi’s dynamic analysis,
all improved versions of all SUTs generated by GI+Ekstazi passed when tested against the entire suite. Hence,
GI+Ekstazi obtained a mean RS of precisely one, i.e., 100% of the test cases passed in all scenarios.

Answer to RQ1.1 – RTS Comparison: Randomly selecting test cases is not as safe as using RTS techniques, failing
to provide a safe selection in 8.9% of cases. State-of-the-art RTS strategies are mostly feasible when used with
GI, yielding almost 100% safety. GI+Ekstazi stood out by not neglecting a single important test case in all 480
independent runs, thus obtaining a perfect RS score. Due to the above reasons, GI+STARTS could not be applied
to joda-time. Of the remaining program runs, GI+STARTS failed to select one fault-revealing test case, failing
only 1 of the 440 runs (0.0023%).

Answer to RQ1.2 – Algorithm Comparison: Unsafe results appeared in 44 runs for GP and 40 runs for LS. If we
exclude the inability of STARTS to select test cases for joda-time, the numbers are 24 and 20, respectively. Of
these 24 and 20 unsafe results, all but one appeared during GI+Random runs (and can thus be attributed to this
inherently unsafe RTS technique). The only unsafe result using state-of-the-art RTS techniques appeared in a
GI+STARTS run with GP.
Answer to RQ1: We can safely state that Ekstazi always selects all the relevant test cases for GI, whereas

STARTS fails in some edge cases due to its static analysis limitations. We have not observed any significant
difference in safety between different GI algorithms. State-of-the-art RTS techniques are safe to use with GI for
both GP and LS.

6.2 Answer to RQ2 – Effectiveness
One concern with the impact of RTS on the general GI effectiveness is that the use of RTS might affect how much
improvement can be achieved by the GI algorithms. Therefore, it is important to analyse the results in terms of
the Relative Improvement Change (RIC – Equation 4) metric we devised in Section 4.2. Tables 3 and 4 present,
respectively, the median RIC results and the effect size of the 20 independent runs of our experiments.

From Table 3, we can observe that, for 16 out of 24 (66.6%) cases, using GI without RTS is favourable, i.e., GI
without RTS obtains the most effective results or equivalent results to the most effective approach. In fact, all
approaches obtained favourable results for 16 to 19 cases, meaning the results are somewhat mixed, showing no
strong evidence in favour of a single approach and evidence for similarities between them more often.

Table 4 shows that the difference in effectiveness between GI and GI+Ekstazi/STARTS is not straightforward.
We observe that 25 out of 46 (54.4%) pairwise effect size comparisons between GI and GI+Ekstazi/STARTS show
medium to negligible effect sizes. Thus, in approximately half of the cases, using state-of-the-art RTS techniques

ACM Trans. Softw. Eng. Methodol.

Speeding up Genetic Improvement via Regression Test Selection • 15

Table 3. RQ2: Median Relative Improvement Change (RIC – Equation 4) compared to GI without RTS over 20 independent
runs. Greater RIC values are better. The best RIC medians are highlighted in bold. Grey cells are statistically equivalent to
the best RIC. The last column shows the p-value result of Kruskal-Wallis. Significant p-values (< 0.05) are highlighted in bold.

Algorithm Program GI GI+Ekstazi GI+STARTS GI+Random p-value

GP codec 1.00 3.36 2.29 0.95 < 0.001
compress 1.00 2.53 5.81 3.96 < 0.001
csv 1.00 2.89 3.80 1.68 0.001
fileupload 1.00 2.55 1.97 2.08 0.065
gson 1.00 0.70 0.68 0.86 0.515
imaging 1.00 0.64 0.95 0.46 0.552
jcodec 1.00 1.81 1.18 1.38 0.684
jfreechart 1.00 0.44 0.51 0.22 < 0.001
joda-time 1.00 6.74 – 7.50 < 0.001
spatial4j 1.00 0.93 1.17 1.23 0.478
text 1.00 2.40 0.95 0.57 0.003
validator 1.00 4.92 2.81 4.04 < 0.001

Median 1.00 2.46 1.18 1.30 –

LS codec 1.00 10.27 7.22 1.08 0.001
compress 1.00 0.16 0.14 0.15 < 0.001
csv 1.00 0.54 0.59 0.60 0.016
fileupload 1.00 0.19 0.20 0.17 < 0.001
gson 1.00 1.42 0.82 2.51 0.056
imaging 1.00 1.08 1.11 1.61 0.476
jcodec 1.00 0.84 0.89 0.88 0.926
jfreechart 1.00 1.84 1.74 0.25 0.001
joda-time 1.00 2.96 – 3.19 < 0.001
spatial4j 1.00 0.97 1.25 2.63 < 0.001
text 1.00 0.58 0.41 0.34 0.002
validator 1.00 0.96 0.81 0.70 0.799

Median 1.00 0.96 0.82 0.79 –

does not affect the capability of the GI algorithms to improve the software runtime. For 14 out of 46 (30.4%)
comparisons, using RTS with GI generates largely better software (bold values lower than 0.5), and only for 7
(15.2%), the results are largely worse with RTS (bold values greater than 0.5). However, if we analyse the results
by algorithm (i.e., GP and LS), there is a clear indication that RTS has a beneficial impact on the results of GP (as
observed in our previous work [16]) more often than when using LS. The first observation supporting this notion
is that the GP+RTS area of Table 3 is greyer than the LS+RTS area, highlighting more often the achievement of
the best results or results equivalent to the best. Secondly, the effect size differences show large magnitudes in
favour of GP+RTS more often than GP without RTS. For 10 out of 23 (43.5%) comparisons, GP+RTS yielded largely
better results than GP without RTS, whereas GP without RTS yielded largely better results for only one out of 23
(4.3%) comparisons. These results are not as favourable when considering the LS results. Favourable effect sizes
for LS+RTS only occur in 4 out of 23 (17.4%) cases, while unfavourable ones occur in 6 out of 23 (26.1%) cases.

ACM Trans. Softw. Eng. Methodol.

16 • Guizzo et al.

Table 4. RQ2: Results of the pairwise (Group A/Group B) Vargha-Delaney Â12 (VDA) effect size test for the Relative
Improvement Change (RIC – Equation 4). VDA values greater than 0.5 are better for Group A, and better for Group B when
lower than 0.5. Difference magnitudes are abbreviated as: N = negligible, S = small, M = medium, and L = large. Large effect
sizes are highlighted in bold.

Algorithm Program GI/GI+Ekstazi GI/GI+STARTS GI+Ekstazi/GI+STARTS

GP codec 0.04 (L) 0.14 (L) 0.56 (N)
compress 0.13 (L) 0.00 (L) 0.30 (M)
csv 0.16 (L) 0.20 (L) 0.49 (N)
fileupload 0.26 (L) 0.40 (S) 0.63 (S)
gson 0.56 (N) 0.59 (S) 0.55 (N)
imaging 0.58 (S) 0.48 (N) 0.48 (N)
jcodec 0.42 (S) 0.44 (N) 0.57 (N)
jfreechart 0.78 (L) 0.72 (M) 0.40 (S)
joda-time 0.00 (L) – –
spatial4j 0.46 (N) 0.41 (S) 0.43 (N)
text 0.29 (M) 0.56 (N) 0.73 (M)
validator 0.11 (L) 0.22 (L) 0.66 (S)

LS codec 0.26 (L) 0.21 (L) 0.43 (N)
compress 0.94 (L) 0.97 (L) 0.58 (S)
csv 0.74 (L) 0.73 (M) 0.45 (N)
fileupload 0.89 (L) 0.85 (L) 0.50 (N)
gson 0.38 (S) 0.58 (S) 0.68 (M)
imaging 0.39 (S) 0.40 (S) 0.48 (N)
jcodec 0.45 (N) 0.46 (N) 0.48 (N)
jfreechart 0.20 (L) 0.35 (S) 0.56 (N)
joda-time 0.17 (L) – –
spatial4j 0.48 (N) 0.36 (S) 0.38 (S)
text 0.71 (M) 0.76 (L) 0.63 (S)
validator 0.54 (N) 0.57 (N) 0.51 (N)

As a side note, of the 122 700 valid variants obtained across all combinations of GI algorithms and RTS techniques
in our experiments, 88 794 contained swap edits, 76 923 contained delete edits, 68 957 contained copy edits, and
58 063 contained replace edits. While this may initially seem unintuitive, copy edits can positively impact variant
runtime (e.g., by inserting return statements or breaking out of loops earlier). Additionally, prior work has shown
that copy edits combined with other edit types can replicate the effect of different edit operations [30]. For
instance, if a given statement is copied to a different location and one of the statements neighbouring the copied
statement is subsequently deleted, the outcome is the same as a single replace operation.

In conclusion, we observe that using RTS has no significant impact on GI effectiveness in most cases. These
results confirm our expectation since RTS does not change the overall mechanism of the GI algorithms but rather
the fitness evaluation process. In a minority of cases where a positive impact is observed, we conjecture this might
be because RTS narrows down the test cases used during the improvement search to only the significant ones,
thus reducing the number of executions that can introduce noise to the improvement measurement and making
the differences in execution time more noticeable. In other words, by using only a subset of the test suite, the

ACM Trans. Softw. Eng. Methodol.

Speeding up Genetic Improvement via Regression Test Selection • 17

execution time of the software under improvement is considerably lower. Thus, even a one-hundred-millisecond
improvement is deemed more significant by the GI algorithm. In such a case, the GI algorithm will keep improving
such variants. If the entire test suite were used, the same hundred milliseconds of improvement would be “diluted”
and deemed less valuable, increasing the odds of discarding the improving variant during evolution.

Answer to RQ2.1 – RTS Comparison: For all comparisons between GI+Ekstazi and GI+STARTS, the results
showed only negligible to medium effect size differences. Moreover, there is a significant difference for only one
of the 23 comparisons, and even this is still a medium effect size. Hence, there is no strong evidence to suggest
that STARTS and Ekstazi differ in their impacts on the improvement effectiveness of GI.

Answer to RQ2.2 – Algorithm Comparison: When comparing the results obtained for each GI algorithm (i.e.,
GP and LS), we observed a greater proportion of positive RIC when using RTS with GP (43.5%) than RTS with
LS (17.4%). In other words, when using RTS with GP, there is a greater chance of obtaining better software
improvements (relative to GP without RTS) than when using LS. While the reasoning behind this finding is
unclear, it indicates that the resources saved using RTS are more productively reallocated towards generating
better variants with GP.

Answer to RQ2: The use of RTS seems to be detrimental to the effectiveness of GI in only a small proportion
of cases (15.2%), offering no change in effectiveness for most of the cases (54.4%) and even improvements in
roughly a third of the cases (30.4%). It should also be noted that the impact on effectiveness measured for each
program does not correlate with any of the metrics presented in Table 1, suggesting that engineers using RTS
when applying GI to larger-scale programs should expect to see similar performance. Our results showed that
both RTS techniques have a similar impact on the effectiveness values. On the other hand, the choice of the GI
algorithm can yield different effectiveness: GP benefits the most from RTS in terms of effectiveness.

6.3 Answer to RQ3 – Efficiency
This section presents the results and answers for RQ3 regarding the efficiency of using GI with the various RTS
techniques. The results are presented in the form of Relative Cost (RC – Equation 6) compared to using no RTS.
Tables 5 and 6 show, respectively, the median RC results and the effect size over the 20 independent runs. Figure 2
depicts the RC values as boxplots for a more fine-grained visualisation.

The first observation is that, in the vast majority of the cases, more specifically for 20 out of 24 (83.3%) group
comparisons, using RTS yields statistically significant better results. These results are expected since improving
the efficiency of testing is the precise objective of using RTS. On average, Ekstazi obtained the best efficiency
when compared to STARTS, with median RC values of 0.72 for GP and 0.58 for LS (i.e., it costs 28% and 42% less
than using no RTS with these search algorithms, respectively). In comparison, STARTS achieved RC values of
0.93 (7% reduction) with GP and 0.96 (4% reduction) with LS. Considering the effect size pairwise comparison,
for 14 out of 22 (63.6%) cases, there were no large differences between GI+Ekstazi and GI+STARTS. However,
for 7 out of 22 (31.8%) cases, GI+Ekstazi showed largely better efficiency than GI+STARTS, while GI+STARTS
only showed large favourable efficiency compared to GI+Ekstazi in one out of 22 (4.5%) cases. This efficiency
gap is likely due to the differences in each tool’s test case selection methods (described in Section 2.1). STARTS
is relatively conservative in its selection phase [38], translating to a larger set of tests for a given variant and
resulting in longer execution times, thus yielding higher RC values. As seen in Table 2, Ekstazi is typically more
precise in selecting only those test cases that could make a given variant fail, meaning failing variants can be
identified more efficiently as fewer irrelevant test cases are executed. For one program (“spatial4j”), GI+Random
selected the fewest test cases. This behaviour is reasonable to expect in some cases as GI+Random selects tests
without considering safety. In this particular case, the targeted method in “spatial4j” is one on which many other
components of the software depend. Thus, the majority of the tests from the test suite traversed this method and
were deemed necessary by both RTS tools.

ACM Trans. Softw. Eng. Methodol.

18 • Guizzo et al.

Table 5. RQ3:Median Relative Cost (RC – Equation 6) compared to GI without RTS over 20 independent runs. Lower RC
values are better. The best RC medians are highlighted in bold. Grey cells are statistically equivalent to the best RC. The last
column shows the p-value result of Kruskal-Wallis. Significant p-values (< 0.05) are highlighted in bold.

Algorithm Program GI GI+Ekstazi GI+STARTS GI+Random p-value

GP codec 1.00 0.39 0.40 0.77 < 0.001
compress 1.00 0.32 0.38 0.89 < 0.001
csv 1.00 1.03 0.93 0.82 0.008
fileupload 1.00 1.11 0.93 1.05 0.028
gson 1.00 0.83 0.99 0.88 < 0.001
imaging 1.00 0.79 0.98 0.40 < 0.001
jcodec 1.00 0.22 1.03 1.30 < 0.001
jfreechart 1.00 0.34 0.30 0.40 < 0.001
joda-time 1.00 0.50 – 0.71 < 0.001
spatial4j 1.00 0.78 1.02 0.57 < 0.001
text 1.00 0.67 0.78 1.15 < 0.001
validator 1.00 0.82 0.47 1.01 0.015

Median 1.00 0.72 0.93 0.85 –

LS codec 1.00 0.28 0.29 0.98 < 0.001
compress 1.00 0.24 0.27 1.06 < 0.001
csv 1.00 0.95 1.02 0.74 < 0.001
fileupload 1.00 0.95 0.96 0.95 0.636
gson 1.00 0.87 1.06 0.70 < 0.001
imaging 1.00 0.87 0.96 0.22 < 0.001
jcodec 1.00 0.20 1.03 1.09 < 0.001
jfreechart 1.00 0.39 0.44 0.32 < 0.001
joda-time 1.00 0.45 – 1.29 < 0.001
spatial4j 1.00 0.55 0.82 0.45 < 0.001
text 1.00 0.86 0.99 1.18 0.002
validator 1.00 0.61 1.00 0.49 0.088

Median 1.00 0.58 0.96 0.84 –

Similarly to our findings for effectiveness, the amount of improvement in terms of efficiency for each program
when using RTS with GI did not demonstrate a clear relationship with the program metrics in Table 1. We
observed efficiency gains in all programs, regardless of size. In general, we believe the efficiency gains from
applying RTS will depend on more in-depth factors related to the quality of the test suite provided (e.g., whether
many tests cover the same branches, how long they run for, and so on) and what proportion of the test suite
covers the methods being targeted for improvement. For instance, if there is significant overlap in the source
code covered by many test cases, an RTS tool will struggle to reduce the size of the test suite. This was the case
for “spatial4j” discussed above, meaning Ekstazi could only reduce the test suite size by 16.44%, while STARTS
could not reduce the test suite at all (Table 2).

Although the benefits of using RTS are prominent for the engineer (e.g., they can save up to 80% of execution
time by using LS with Ekstazi for jcodec), the benefits are also significant for researchers performing experiments

ACM Trans. Softw. Eng. Methodol.

Speeding up Genetic Improvement via Regression Test Selection • 19

Table 6. RQ3: Results of the pairwise (Group A/Group B) Vargha-Delaney Â12 (VDA) effect size test for the Relative Cost (RC
– Equation 6). VDA values lower than 0.5 are better for Group A, and better for Group B when greater than 0.5. Difference
magnitudes are abbreviated as: N = negligible, S = small, M = medium, and L = large. Large effect sizes are highlighted in
bold.

Algorithm Program GI/GI+Ekstazi GI/GI+STARTS GI+Ekstazi/GI+STARTS

GP codec 0.96 (L) 0.89 (L) 0.55 (N)
compress 0.99 (L) 0.98 (L) 0.30 (M)
csv 0.49 (N) 0.65 (S) 0.70 (M)
fileupload 0.36 (S) 0.63 (S) 0.74 (L)
gson 0.83 (L) 0.49 (N) 0.16 (L)
imaging 0.80 (L) 0.52 (N) 0.24 (L)
jcodec 1.00 (L) 0.49 (N) 0.00 (L)
jfreechart 1.00 (L) 0.97 (L) 0.64 (S)
joda-time 0.97 (L) – –
spatial4j 0.70 (M) 0.50 (N) 0.27 (M)
text 0.82 (L) 0.76 (L) 0.35 (S)
validator 0.63 (S) 0.74 (M) 0.64 (S)

LS codec 0.97 (L) 0.98 (L) 0.47 (N)
compress 1.00 (L) 1.00 (L) 0.19 (L)
csv 0.51 (N) 0.42 (S) 0.40 (S)
fileupload 0.60 (S) 0.61 (S) 0.50 (N)
gson 0.76 (L) 0.48 (N) 0.23 (L)
imaging 0.66 (S) 0.54 (N) 0.37 (S)
jcodec 1.00 (L) 0.57 (N) 0.00 (L)
jfreechart 1.00 (L) 1.00 (L) 0.27 (M)
joda-time 0.89 (L) – –
spatial4j 0.88 (L) 0.58 (S) 0.11 (L)
text 0.66 (S) 0.48 (N) 0.30 (M)
validator 0.72 (M) 0.64 (S) 0.43 (N)

involving GI. Figure 3 shows the cumulative cost in terms of hours of execution time for our entire set of
experiments over 20 independent runs.

More often than not, GI+Ekstazi and GI+STARTS were much less expensive than using GI alone. This can
be seen with the total execution cost of our experiments: i) GI – 1 930 hours (≈11.49 weeks); ii) GI+Ekstazi –
915 hours (≈5.45 weeks); iii) GI+STARTS – 1 233 hours (≈7.34 weeks); and iv) GI+Random – 1 515 hours (≈9.02
weeks). Using GI+Ekstazi, we were able to save more than 1 000 hours of execution time, i.e., roughly six weeks
of computational resources.

A case can be made that the high cost of GI could easily be solved by spawning more parallel jobs. However,
this approach still would not solve the problem of excessive computational resource consumption. As software
becomes more expensive, we believe the concern of sustainability should lie in the hands of the engineers
who developed it. To delegate such responsibility to other disciplines (e.g., distributed computing) is to deny
accountability for unsustainable engineering. Such practice can be detrimental to the important goal of achieving
greener SE.

ACM Trans. Softw. Eng. Methodol.

20 • Guizzo et al.

Fig. 2. RQ3: Relative Cost (RC) of strategies. The y-axis shows the RC results, whereas the x-axis shows the two algorithms
used: GP and LS. Each boxplot represents the RC result of a given RTS strategy over 20 independent runs. Lower values are
better. The dashed line represents the median cost of GI without RTS, i.e., baseline.

Gin uses a “fail fast” strategy, meaning it stops the evaluation of a given software variant at the signal of the
first failing test case. Consequently, failing variants are cheaper to evaluate than variants for which no test case
fails. With this in mind, an RTS technique could incur a higher cost than using no RTS by failing to select relevant
test cases. In this situation, even though fewer test cases are considered for execution by GI with RTS than GI
without RTS, the algorithm has no signal to stop executing the evaluation on faulty variants since relevant test
cases that would fail are not executed. Hence, the execution might go on longer than expected, causing the cost
to increase. As seen in Section 6.1, state-of-the-art RTS techniques are safe to use and hardly discard relevant test
cases, contrary to Random RTS, which fails more often. Thus, we observed the aforementioned phenomenon
in our experiments with GI+Random on programs for which it failed to select relevant test cases. Although its
median RC values for each algorithm both fell below one (i.e., cheaper than no RTS), GI+Random was statistically
more expensive than using no RTS at all for specific programs such as “jcodec”, “joda-time”, and “text”.

When comparing both algorithms by their RC medians in Table 5, we can see that LS (0.58) showed better
reductions than GP (0.72) when using Ekstazi, but the difference is not entirely visible for the other cases. Figure 4
presents the RC results, similarly to Figure 2, but with boxes grouped by algorithm. Since Random RTS is only
used as a sanity check and we already compared it in the previous analysis, we omitted it from this figure. For
“codec” and “compress”, it is clear that LS obtains better efficiency gains with both RTS strategies than GP. On the
other hand, GP is more efficient for “jfreechart” and “text”. The results are mixed in all other cases.

In contrast to the results of RQ2 that showed that different algorithms impact the effectiveness gains more than
the RTS techniques, our efficiency results suggest that efficiency gains stem from RTS techniques rather than the

ACM Trans. Softw. Eng. Methodol.

Speeding up Genetic Improvement via Regression Test Selection • 21

Fig. 3. RQ3: Cumulative execution times in hours for all runs. The y-axis shows the cumulative cost, whereas the x-axis
shows the different strategies used in our experiments. The results are divided into three phases: i) Overhead – cost of
profiling (collecting dependencies between source files and test cases and performing test case selection); ii) GP Optimisation
Time – cost of the GI optimisation using GP; and iii) LS Optimisation Time – cost of the GI optimisation using LS.

algorithms being used. This is somewhat expected since GI algorithms are commonly designed to achieve better
effectiveness and RTS techniques to achieve better efficiency; thus, they differ mainly on those properties.

Answer to RQ3.1 – RTS Comparison: GI+Ekstazi showed more efficiency gains when compared to GI+STARTS.
Ekstazi yielded a median execution time reduction of 28% with GP and 42% with LS, while STARTS yielded 7%
with GP and 4% with LS. When summing the total execution costs of our experiments, GI+Ekstazi took 915 hours,
whereas STARTS took 1 233.

Answer to RQ3.2 – Algorithm Comparison: In general, both algorithms obtain similar efficiency gains. In a few
specific cases (e.g., “codec” and “compress” for LS, and “jfreechart” and “text” for GP), one algorithm showed
slightly better RC than the other, but for most cases the difference is not statistically significant.

Answer to RQ3: Using RTS techniques can reduce the cost of the entire GI process by up to 80%. For the vast
majority of cases (83.3%), by using Ekstazi we were able to significantly improve the efficiency of GI, reducing
on average the cost of executing it by 28% in our experiments with GP and 42% with LS. Ekstazi was also more
efficient than STARTS, obtaining largely better efficiency than STARTS in 31.8% of cases. When looking at the
total cost of our experimental procedure, we observed a difference in total execution time of 6 weeks (or 1 000
hours) between the cost of GI and GI+Ekstazi, further showcasing how much RTS is essential for more sustainable
GI. Similarly to our findings for effectiveness, we observed efficiency gains when using RTS with GI for all
programs regardless of their sizes, meaning RTS is likely to reduce GI execution time when applied to programs

ACM Trans. Softw. Eng. Methodol.

22 • Guizzo et al.

Fig. 4. RQ3.2: Relative Cost (RC) of algorithms. The y-axis shows the RC results, whereas the x-axis shows the two main
RTS strategies used: Ekstazi and STARTS. Each boxplot represents the RC result of a given algorithm over 20 independent
runs. Lower values are better. The dashed line represents the median cost of either GP or LS without RTS, i.e., baseline.

at any scale. Overall, the GI algorithms do not seem to prefer a specific RTS technique. Our results show that the
efficiency gains stem from the RTS strategies rather than the GI algorithms.

6.4 Answer to RQ4 – Trade-Off
This section discusses the performance of the various combinations of GI algorithms and RTS techniques when
applied to multiple scenarios, aiming to gain a more practical perspective of the trade-offs each combination
offers. Since our findings from Section 6.1 indicate that it is unsafe to use in practice, we have avoided considering
GI+Random when answering this question so as not to mislead the reader: we do not recommend engineers use
GI+Random in any of the following scenarios.

The first trade-off scenario we consider is %improv , which concerns finding the best possible program variant.
Table 7 presents the median improvement in seconds of the best program variant found during 20 independent
runs, i.e., by how much the execution time of the test suite is reduced by a program variant.

Similarly to our previous results [16], GI+Ekstazi showed the best improvement overall. However, because our
previous work only considered GP as a GI algorithm and fewer programs, we observe a few other interesting
results in this work.

First, the improvement obtained is smaller on average when using LS with RTS but better than when using no
RTS at all. Looking at the baseline results (GI without RTS), we found that LS performs better for 7 out of 12
programs, and GP performs better for 5 out of 12 programs. On the other hand, GI+Ekstazi performs better using

ACM Trans. Softw. Eng. Methodol.

Speeding up Genetic Improvement via Regression Test Selection • 23

Table 7. RQ4: %improv scenario. Median improvement in total seconds of improvement of the best variant found. Greater
values are better. Best values are highlighted in bold.

Algorithm Program GI GI+Ekstazi GI+STARTS

GP codec 1.29 4.35 2.96
compress 2.46 6.23 14.28
csv 0.78 2.25 2.95
fileupload 0.05 0.13 0.10
gson 0.29 0.20 0.20
imaging 11.98 7.63 11.42
jcodec 6.77 12.26 7.95
jfreechart 2.06 0.90 1.05
joda-time 0.51 3.46 –
spatial4j 2.32 2.16 2.72
text 1.46 3.52 1.40
validator 0.29 1.44 0.82

Median 1.38 2.86 2.72

LS codec 0.34 3.49 2.45
compress 19.82 3.16 2.87
csv 0.75 0.41 0.44
fileupload 0.40 0.07 0.08
gson 0.37 0.52 0.30
imaging 2.48 2.67 2.74
jcodec 8.38 7.08 7.46
jfreechart 0.79 1.45 1.38
joda-time 0.57 1.69 –
spatial4j 2.49 2.41 3.12
text 0.78 0.45 0.32
validator 0.52 0.50 0.42

Median 0.76 1.57 1.38

GP rather than LS for 8 out of 12 cases, while GI+STARTS performs better using GP for 8 out 11 cases. In other
words, when using GP, the engineer might obtain better results by also using RTS.

Second, GI+Ekstazi obtained the best program variants (on average) for 10 out of 24 cases, whereas GI obtained
the best variants for 9 out of 24 cases. Additionally, the overall median improvement achieved by GI+Ekstazi is
substantially greater than that of GI (more than double). Therefore, coupled with the fact that GI+Ekstazi is the
most efficient option, the trade-off is clear: GI+Ekstazi can find the best variant while spending less computational
resources more often.

Table 8 presents the results for our second scenario, �improv , where the engineer is concerned with finding an
improving variant as fast as possible. The table shows the median execution time in seconds until the algorithm
found a positive and valid software variant.

The first observation is somewhat aligned with the results of RQ2: Using RTS significantly speeds up the search
for program variants. Thus, the time needed to find the first improving and valid variant is lower for GI+Ekstazi

ACM Trans. Softw. Eng. Methodol.

24 • Guizzo et al.

Table 8. RQ4: �improv scenario. Median execution time in seconds needed to find the first valid and improving software
variant. Lower values are better. Best values are highlighted in bold.

Algorithm Program GI GI+Ekstazi GI+STARTS

GP codec 211.11 50.57 32.67
compress 244.34 32.27 36.30
csv 63.17 75.82 106.14
fileupload 64.07 53.36 71.59
gson 4.28 2.45 3.69
imaging 201.27 153.25 188.30
jcodec 310.69 59.57 257.39
jfreechart 27.48 8.88 9.13
joda-time 76.91 27.46 –
spatial4j 69.88 51.21 41.79
text 31.38 11.53 11.57
validator 27.04 4.82 14.41

Median 66.97 41.42 36.30

LS codec 168.26 31.00 31.11
compress 242.71 36.85 35.79
csv 67.40 62.53 84.55
fileupload 18.57 13.81 16.16
gson 4.56 3.12 3.80
imaging 146.78 134.66 162.40
jcodec 376.17 38.90 336.60
jfreechart 31.26 12.44 9.34
joda-time 33.77 8.91 –
spatial4j 56.06 60.29 49.05
text 33.60 2.77 6.71
validator 35.68 5.25 14.08

Median 45.87 22.41 31.11

and GI+STARTS. Unlike our previous results [16], where we found that STARTS found the fastest improvements,
we observe that GI+Ekstazi finds the first improving variant faster in most cases. This aligns with the findings
from Section 6.3, which showed that Ekstazi provides the best efficiency gains overall.

Table 9 presents the median number of valid and improving patches found by each algorithm. These results
concern our third scenario, �improv , where the engineer focuses on finding the largest set of improving and valid
patches.

Different from our prior study [16], where GI+Ekstazi found the widest variety of program variants, we found
that not using RTS results in more diversity. These results are mainly due to the inclusion of LS, where GI without
RTS found more variants for 8 out of 12 cases. If we only consider GP, then GI+Ekstazi was able to find more
variants for 7 out of 12 cases.

Answer to RQ4: If the engineer is concerned with finding the best possible program variant using GI, then
the results are clear: GI+Ekstazi offers the best trade-off. GI+Ekstazi is able to find the best variants overall with

ACM Trans. Softw. Eng. Methodol.

Speeding up Genetic Improvement via Regression Test Selection • 25

Table 9. RQ4: �improv scenario. Median number of distinct, positive, and valid patches. Greater values are better. Best values
are highlighted in bold.

Algorithm Program GI GI+Ekstazi GI+STARTS

GP codec 6.0 16.0 9.0
compress 11.0 28.5 41.5
csv 25.0 48.0 24.0
fileupload 2.5 4.0 2.0
gson 48.5 40.5 25.5
imaging 25.5 21.0 23.0
jcodec 23.5 35.0 23.5
jfreechart 121.5 35.5 73.0
joda-time 7.0 8.0 –
spatial4j 11.0 5.0 18.0
text 13.0 19.5 18.5
validator 36.0 44.0 7.0

Median 18.2 24.8 23.0

LS codec 27.0 9.5 12.5
compress 60.5 51.5 53.5
csv 38.0 34.5 32.0
fileupload 28.0 6.0 6.0
gson 73.5 61.5 53.0
imaging 16.0 28.0 30.5
jcodec 11.5 38.0 47.5
jfreechart 73.0 104.5 67.5
joda-time 23.0 15.0 –
spatial4j 27.0 5.0 20.0
text 20.0 22.0 24.0
validator 29.5 15.0 25.0

Median 27.5 25.0 30.5

excellent efficiency. This efficiency also makes GI+Ekstazi the best choice when trying to find an improving
variant as fast as possible. On the third trade-off analysis concerning the variety of program improvements, we
found that LS provides a wider gamma of patches without RTS, whereas GP yields more diversity with Ekstazi.
Overall, it appears that GI+Ekstazi using GP provides the most balanced trade-off in most scenarios.

7 THREATS TO VALIDITY
Threats to External Validity. As is common in SE experiments, it is possible that the set of subject programs

may not be representative of all software. To mitigate this threat, we have included five new subjects from related
work on top of the previous seven, thus forming a diverse set of programs from many domains. As shown in
Table 1, the programs used in our empirical evaluation are well-known, non-trivial, of different sizes, have test
suites of various sizes and coverages, and are used for different purposes.

ACM Trans. Softw. Eng. Methodol.

26 • Guizzo et al.

Another external threat concerns the fact that we have used only two RTS techniques and two GI algorithms
in our experiments, and that Gin can only target one method at a time or multiple methods from the same class
(which it handles all in the same way, regardless of their type). Additionally, other GI tools may benefit from
the application of RTS approaches in different ways (e.g., due to the various tool execution times and algorithm
implementations). In this work, we have included an additional GI algorithm (LS) precisely to improve the
generalisability of our results and to unveil the effect of the different state-of-the-art RTS techniques in this new
scenario. Although more algorithms, techniques, and GI tools could have been used, the computational cost of the
experiments would have been prohibitive. Thus, we decided to experiment only with the state-of-the-art [14, 27].

Threats to Internal Validity. We have taken a few measures when designing the experiments to reduce internal
threats concerning different environments affecting the results. First, we ran all experiments on the same cluster of
machines, giving them a common environment and thus mitigating possible execution variations due to hardware
differences. Second, we used the same configuration for all experiments, including the optimisation-stopping
condition. Finally, we provided all algorithms and strategies with the same test suite for each program, meaning
a single shared benchmark was used to measure execution times.

Since test cases can only reveal the presence of bugs in the software and not the software’s correctness [10],
our validation can only measure the adequacy of the program variants w.r.t. the available test suites, not their
correctness. Therefore, another internal threat concerns the validity of our results if we considered correct patches
rather than adequate patches during the validation process. Unfortunately, analysing programs to guarantee
correctness is still generally impossible with automated tools and would require an infeasible amount of effort to
do so manually. In order to minimise this threat, we have used the original test suites provided with the programs
as a baseline for validity. The programs’ developers and other open-source collaborators carefully curated these
test suites and use them in the continuous integration process to validate pull requests. Despite this, there is still
a possibility that these tests are insufficient to test GI-generated patches adequately. One possible solution to
mitigate this threat would be to automatically generate new test cases to improve the testing power of such test
suites. However, this approach could introduce overfitting in the results [28]. We tried to mitigate this threat
in our experiments by including programs with a range of values for test suite coverage. However, handling
insufficient test suites remains an open challenge in GI for non-functional properties [32].

Threats to Construct Validity. Given the stochastic nature of the GI algorithms used in this paper, we performed
20 independent runs to account for the randomness variation of results. Moreover, we executed each test case 10
times to account for possible fluctuations in their execution time. We also took extra care when selecting and
executing the statistical significance and effect size tests to only claim differences in the results when sufficient
evidence is found. Moreover, we do not make any statistical assumptions about the data, thus avoiding tests that
could jeopardise the validity of our analysis.

8 RELATED WORK
This section describes papers related to the usage of RTS techniques for improving the GI process. As far as we
know, only Mehne et al. [29] have investigated RTS in the context of Automated Program Repair (APR), but never
for non-functional GI. In their work, the authors define their own ad-hoc RTS technique and evaluate the results
in terms of APR speed-up. The results show a speed-up of up to 1.8 times the original cost of APR for C programs
using GenProg [24].

Additional studies use various regression techniques other than RTS. Venugopal et al. [40] proposed using test
case prioritisation for APR to prioritise test cases that can make the validation fail, thus failing faster when an
invalid patch is generated. As shown by their results, the authors were able to save up to 57.5% of execution time.
Similarly, Qi et al. [34] proposed TrpAutoRepair, a technique that can prioritise test cases for APR in an online

ACM Trans. Softw. Eng. Methodol.

Speeding up Genetic Improvement via Regression Test Selection • 27

fashion. The idea is to avoid the offline training of the techniques and only use information generated during the
test validation phase. Fast et al. [12] used incremental random sampling of test cases for patch validation in APR.
In summary, their approach selects all failing test cases and a subset of passing test cases. If the patch passes
all selected test cases, another sampling is performed. The authors compared their technique with a test suite
minimisation based on Genetic Algorithms (GA) [9]. The authors obtained savings of up to 81% in computational
resources.

Although APR can be considered a type of functional GI (i.e., it improves functional properties), it is only a
subset of what GI can achieve. Only the work of Mehhne et al. [29] touches the surface regarding the evaluation
of the effect of RTS in the context of GI, but then again, it focuses on APR alone. Analysing the effect of RTS in the
context of non-functional GI is considerably different than analysing its effect in the context of APR, since RTS
impacts precisely what indicates (most of the time) the GI’s improvement capabilities: computational resources
consumption. In other words, reducing the cost of APR with RTS impacts only the approach’s cost, whereas
reducing the cost of non-functional GI with RTS impacts the approach’s quality as well.

Due to the lack of work investigating the phenomena that can arise from using RTS in a non-functional GI
context, we conducted a set of experiments to analyse such phenomena in previous work [16]. Our work differs
from the articles mentioned in this section because: i) we focus on non-functional GI (as opposed to APR); ii) we
use test case selection (as opposed to test suite minimisation and prioritisation); iii) we focus on the improvement
of Java programs (as opposed to C programs); iv) and we focus on quantifying the overall effect that RTS has in
this context. In our previous work [16], we evaluated the impact of two RTS techniques when using GP in seven
real-world Java programs. To the best of our knowledge, it was the first study of its kind.

In this paper we substantially extend our previous work by including a new GI algorithm, five new and larger
subject programs, new RQs, and we provide a more thorough description of our approach. Overall, as seen in
Section 6, this extension brought to light exciting results that unveiled differences in how RTS behaves in different
contexts.

9 CONCLUSION
Although GI has been successful in improving many software properties [32], the cost of this approach might
still be an issue for its widespread adoption. Test case execution for validating improved variants remains the
primary source for this high cost. In this paper, we tackled this problem by proposing the usage of RTS techniques
during the evolutionary process of non-functional GI for improving execution time. We analysed the impact of
state-of-the-art techniques frommany angles, including safety, effectiveness, efficiency, and engineering trade-offs.
With that in mind, we conducted a set of experiments with 12 real-world programs, two state-of-the-art RTS
tools (Ekstazi and STARTS), and two GI algorithms (GP and LS) to answer four RQs concerning RTS feasibility in
this context.

Our results show that RTS is not only safe, but can also save up to 80% of execution time w.r.t. GI algorithms
without RTS. On average, RTS techniques were able to save 31% of runtime. When analysing the total cost of
our experiments, we discovered that using Ekstazi (dynamic RTS) resulted in six weeks (approximately 1 000
hours) of execution time savings. Furthermore, RTS also showed little to no negative effect on the GI capabilities
of improvement, i.e., most of the time, RTS techniques do not impact the effectiveness of GI algorithms. On the
contrary, RTS can potentially improve the final results of non-functional GI. Finally, we showed that Ekstazi
can help the GI algorithms find better software variants, find an improving and valid variant faster than other
techniques, and provide the engineer with a wider variety of patches.

Given these results, we advise future GI research to use RTS during the evolutionary process. STARTS and
Ekstazi have both been implemented and made accessible to anyone using Gin, available at https://github.com/
gintool/gin. This type of traditional SE technique can help the entire field advance towards a more sustainable

ACM Trans. Softw. Eng. Methodol.

https://github.com/gintool/gin
https://github.com/gintool/gin

28 • Guizzo et al.

practice without the need for more potent parallelisation hardware. We believe that the results of our work serve
as evidence that SE techniques can be used to solve AI problems as well and that there are other SE for AI topics
that can be explored in the future.

In future work, we intend to evaluate the usage of other regression techniques, such as test case prioritisation,
test suite minimisation, and online test case selection. Other possibilities include using the data collected during
the GI execution to not only select fewer test cases but also include newly generated ones in case of insufficient
testing. However, other works [28, 44] have suggested that overfitting is an open challenge in non-functional
GI, thus requiring more research. We also plan to investigate the effect of flakiness both in functional and
non-functional GI.

ACKNOWLEDGMENTS
This research is funded by the ERC advanced fellowship grant 741278 (EPIC: Evolutionary Program Improvement
Collaborators) and by the EPSRC Fellowship grant EP/P023991/1 (Automated Software Specialisation Using
Genetic Improvement). For the purpose of open access, the authors have applied a Creative Commons Attribution
(CC BY) license to any accepted manuscript version arising.

REFERENCES
[1] Gabin An, Aymeric Blot, Justyna Petke, and Shin Yoo. 2019. PyGGI 2.0: language independent genetic improvement framework. In

Proceedings of the ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019, Marlon Dumas, Dietmar Pfahl, Sven Apel, and Alessandra
Russo (Eds.). ACM, 1100–1104. https://doi.org/10.1145/3338906.3341184

[2] Aymeric Blot and Justyna Petke. 2021. Empirical Comparison of Search Heuristics for Genetic Improvement of Software. IEEE
Transactions on Evolutionary Computation 25, 5 (2021), 1001–1011. https://doi.org/10.1109/TEVC.2021.3070271

[3] Alexander E.I. Brownlee, Justyna Petke, and Anna F. Rasburn. 2020. Injecting Shortcuts for Faster Running Java Code. In 2020 IEEE
Congress on Evolutionary Computation (CEC). 1–8. https://doi.org/10.1109/CEC48606.2020.9185708

[4] Alexander E. I. Brownlee, Justyna Petke, Brad Alexander, Earl T. Barr, Markus Wagner, and David R. White. 2019. Gin: Genetic
Improvement Research Made Easy. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO). ACM, New York,
NY, USA, 985–993. https://doi.org/10.1145/3321707.3321841

[5] Bobby R. Bruce, Justyna Petke, Mark Harman, and Earl T. Barr. 2019. Approximate Oracles and Synergy in Software Energy Search
Spaces. IEEE Trans. Software Eng. 45, 11 (2019), 1150–1169. https://doi.org/10.1109/TSE.2018.2827066

[6] Nathan Burles, Edward Bowles, Alexander E. I. Brownlee, Zoltan A. Kocsis, Jerry Swan, and Nadarajen Veerapen. 2015. Object-
Oriented Genetic Improvement for Improved Energy Consumption in Google Guava. In Search-Based Software Engineering - 7th
International Symposium, SSBSE 2015, Bergamo, Italy, September 5-7, 2015, Proceedings (Lecture Notes in Computer Science, Vol. 9275),
Márcio de Oliveira Barros and Yvan Labiche (Eds.). Springer, 255–261. https://doi.org/10.1007/978-3-319-22183-0_20

[7] Lingchao Chen and Lingming Zhang. 2018. Speeding up Mutation Testing via Regression Test Selection: An Extensive Study. In
Proceedings of the 11th International Conference on Software Testing, Verification and Validation (ICST). IEEE, 58–69. https://doi.org/10.
1109/ICST.2018.00016

[8] Fábio de Almeida Farzat, Márcio de Oliveira Barros, and Guilherme Horta Travassos. 2018. Challenges on applying genetic improvement
in JavaScript using a high-performance computer. J. Softw. Eng. Res. Dev. 6 (2018), 12. https://doi.org/10.1186/s40411-018-0056-2

[9] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation 6, 2 (2002), 182–197. https://doi.org/10.1109/4235.996017

[10] Edsger W. Dijkstra. 1972. The Humble Programmer. Commun. ACM 15, 10 (oct 1972), 859––866. https://doi.org/10.1145/355604.361591
[11] Zhen Yu Ding, Yiwei Lyu, Christopher Steven Timperley, and Claire Le Goues. 2019. Leveraging program invariants to promote

population diversity in search-based automatic program repair. In Proceedings of the 6th International Workshop on Genetic Improvement,
GI@ICSE 2019, Montreal, Quebec, Canada, May 28, 2019, Justyna Petke, Shin Hwei Tan, William B. Langdon, and Westley Weimer (Eds.).
ACM, 2–9. https://doi.org/10.1109/GI.2019.00011

[12] Ethan Fast, Claire Le Goues, Stephanie Forrest, and Westley Weimer. 2010. Designing better fitness functions for automated program
repair. In Proceedings of the 12th Annual Genetic and Evolutionary Computation Conference (GECCO). 965–972. https://doi.org/10.1145/
1830483.1830654

[13] Michel Gendreau and Jean-Yves Potvin. 2019. Handbook of Metaheuristics (3 ed.). Springer. 604 pages.

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3338906.3341184
https://doi.org/10.1109/TEVC.2021.3070271
https://doi.org/10.1109/CEC48606.2020.9185708
https://doi.org/10.1145/3321707.3321841
https://doi.org/10.1109/TSE.2018.2827066
https://doi.org/10.1007/978-3-319-22183-0_20
https://doi.org/10.1109/ICST.2018.00016
https://doi.org/10.1109/ICST.2018.00016
https://doi.org/10.1186/s40411-018-0056-2
https://doi.org/10.1109/4235.996017
https://doi.org/10.1145/355604.361591
https://doi.org/10.1109/GI.2019.00011
https://doi.org/10.1145/1830483.1830654
https://doi.org/10.1145/1830483.1830654

Speeding up Genetic Improvement via Regression Test Selection • 29

[14] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical regression test selection with dynamic file dependencies. In
Proceedings of the 2015 International Symposium on Software Testing and Analysis (ISSTA). 211–222. https://doi.org/10.1145/2771783.
2771784

[15] David E. Goldberg. 1989. Genetic Algorithms in Search, Optimization and Machine Learning (1st ed.). Addison-Wesley Longman
Publishing Co., Inc., USA.

[16] Giovani Guizzo, Justyna Petke, Federica Sarro, and Mark Harman. 2021. Enhancing Genetic Improvement of Software with Regression
Test Selection. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). 1323–1333. https://doi.org/10.1109/
ICSE43902.2021.00120

[17] Giovani Guizzo, Federica Sarro, Jens Krinke, and Silvia R. Vergilio. 2022. Sentinel: A Hyper-Heuristic for the Generation of Mutant
Reduction Strategies. IEEE Transactions on Software Engineering 48, 3 (2022), 803–818. https://doi.org/10.1109/TSE.2020.3002496

[18] Mark Harman, Phil McMinn, Jerffeson Teixeira De Souza, and Shin Yoo. 2011. Search based software engineering: Techniques, taxonomy,
tutorial. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
7007 LNCS (2011), 1–59. https://doi.org/10.1007/978-3-642-25231-0_1

[19] Holger H Hoos and Thomas Stützle. 2004. Stochastic local search: Foundations and applications. Elsevier.
[20] John R Koza. 1992. Genetic programming: on the programming of computers by means of natural selection. Vol. 1. MIT press.
[21] William H. Kruskal and W. Allen Wallis. 1952. Use of Ranks in One-Criterion Variance Analysis. J. Amer. Statist. Assoc. 47, 260 (1952),

583–621.
[22] David Chenho Kung, Jerry Gao, Pei Hsia, Jeremy Lin, and Yasufumi Toyoshima. 1995. Class Firewall, Test Order, and Regression Testing

of Object-Oriented Programs. JOOP 8, 2 (1995), 51–65.
[23] William B. Langdon and Mark Harman. 2015. Optimising Existing Software with GP. IEEE Transactions on Evolutionary Computation 19,

1 (2015), 1–18. https://doi.org/10.1109/TEVC.2013.2281544
[24] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer. 2012. A systematic study of automated program repair:

Fixing 55 out of 105 bugs for $8 each. In Proceedings of the 34th International Conference on Software Engineering (ICSE). IEEE, 3–13.
[25] Claire Le Goues, Neal Holtschulte, Edward K. Smith, Yuriy Brun, Premkumar Devanbu, Stephanie Forrest, and Westley Weimer. 2015.

The ManyBugs and IntroClass Benchmarks for Automated Repair of C Programs. IEEE Transactions on Software Engineering 41, 12
(2015), 1236–1256. https://doi.org/10.1109/TSE.2015.2454513

[26] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and Darko Marinov. 2016. An extensive study of static
regression test selection in modern software evolution. In Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE). ACM Press, 583–594. https://doi.org/10.1145/2950290.2950361

[27] Owolabi Legunsen, August Shi, and Darko Marinov. 2017. STARTS: STAtic regression test selection. In 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 949–954. https://doi.org/10.1109/ASE.2017.8115710

[28] Mingyi Lim, Giovani Guizzo, and Justyna Petke. 2020. Impact of Test Suite Coverage on Overfitting in Genetic Improvement of Software.
In Proceedings of the Symposium on Search Based Software Engineering (SSBSE). Springer.

[29] Ben Mehne, Hiroaki Yoshida, Mukul R. Prasad, Koushik Sen, Divya Gopinath, and Sarfraz Khurshid. 2018. Accelerating Search-Based
Program Repair. In Proceedings of the 11th International Conference on Software Testing, Verification and Validation (ICST). IEEE, 227–238.
https://doi.org/10.1109/ICST.2018.00031

[30] Justyna Petke, Brad Alexander, Earl T. Barr, Alexander E. I. Brownlee, MarkusWagner, and David R. White. 2023. Program transformation
landscapes for automated program modification using Gin. Empirical Software Engineering 28, 4 (2023), 104. https://doi.org/10.1007/
s10664-023-10344-5

[31] Justyna Petke and Alexander E. I. Brownlee. 2019. Software Improvement with Gin: A Case Study. In Search-Based Software Engineering:
11th International Symposium, SSBSE 2019, Tallinn, Estonia, August 31 -– September 1, 2019, Proceedings (Tallinn, Estonia). Springer-Verlag,
Berlin, Heidelberg, 183––189. https://doi.org/10.1007/978-3-030-27455-9_14

[32] J. Petke, S. O. Haraldsson, M. Harman, W. B. Langdon, D. R. White, and J. R. Woodward. 2018. Genetic Improvement of Software: A
Comprehensive Survey. IEEE Transactions on Evolutionary Computation 22, 3 (2018), 415–432. https://doi.org/10.1109/TEVC.2017.2693219

[33] Justyna Petke, Mark Harman, William B. Langdon, and Westley Weimer. 2017. Specialising Software for Different Downstream
Applications Using Genetic Improvement and Code Transplantation. IEEE Transactions on Software Engineering 44, 6 (2017), 574–594.
https://doi.org/10.1109/TSE.2017.2702606

[34] Yuhua Qi, Xiaoguang Mao, and Yan Lei. 2013. Efficient automated program repair through fault-recorded testing prioritization. In IEEE
International Conference on Software Maintenance (ICSM). IEEE, 180–189. https://doi.org/10.1109/ICSM.2013.29

[35] Eric M. Schulte, Jonathan DiLorenzo, Westley Weimer, and Stephanie Forrest. 2013. Automated repair of binary and assembly programs
for cooperating embedded devices. In Architectural Support for Programming Languages and Operating Systems, ASPLOS ’13, Houston,
TX, USA - March 16 - 20, 2013, Vivek Sarkar and Rastislav Bodík (Eds.). ACM, 317–328. https://doi.org/10.1145/2451116.2451151

[36] Eric M. Schulte, Jonathan Dorn, Stephen Harding, Stephanie Forrest, and Westley Weimer. 2014. Post-compiler software optimization
for reducing energy. In Architectural Support for Programming Languages and Operating Systems, ASPLOS ’14, Salt Lake City, UT, USA,
March 1-5, 2014, Rajeev Balasubramonian, Al Davis, and Sarita V. Adve (Eds.). ACM, 639–652. https://doi.org/10.1145/2541940.2541980

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/2771783.2771784
https://doi.org/10.1145/2771783.2771784
https://doi.org/10.1109/ICSE43902.2021.00120
https://doi.org/10.1109/ICSE43902.2021.00120
https://doi.org/10.1109/TSE.2020.3002496
https://doi.org/10.1007/978-3-642-25231-0_1
https://doi.org/10.1109/TEVC.2013.2281544
https://doi.org/10.1109/TSE.2015.2454513
https://doi.org/10.1145/2950290.2950361
https://doi.org/10.1109/ASE.2017.8115710
https://doi.org/10.1109/ICST.2018.00031
https://doi.org/10.1007/s10664-023-10344-5
https://doi.org/10.1007/s10664-023-10344-5
https://doi.org/10.1007/978-3-030-27455-9_14
https://doi.org/10.1109/TEVC.2017.2693219
https://doi.org/10.1109/TSE.2017.2702606
https://doi.org/10.1109/ICSM.2013.29
https://doi.org/10.1145/2451116.2451151
https://doi.org/10.1145/2541940.2541980

30 • Guizzo et al.

[37] August Shi, Milica Hadzi-Tanovic, Lingming Zhang, Darko Marinov, and Owolabi Legunsen. 2019. Reflection-Aware Static Regression
Test Selection. Proc. ACM Program. Lang. 3, OOPSLA, Article 187 (oct 2019), 29 pages. https://doi.org/10.1145/3360613

[38] Min Kyung Shin, Sudipto Ghosh, and Leo R. Vijayasarathy. 2022. An empirical comparison of four Java-based regression test selection
techniques. Journal of Systems and Software 186 (2022), 111174. https://doi.org/10.1016/j.jss.2021.111174

[39] András Vargha and Harold D Delaney. 2000. A critique and improvement of the CL common language effect size statistics of McGraw
and Wong. Journal of Educational and Behavioral Statistics 25, 2 (2000), 101–132.

[40] Yazhini Venugopal, Phung Quang-Ngoc, and Lee Eunseok. 2020. Modification point aware test prioritization and sampling to improve
patch validation in automatic program repair. Applied Sciences (Switzerland) 10, 5 (2020), 1–14. https://doi.org/10.3390/app10051593

[41] David Williams, James Callan, Serkan Kirbas, Sergey Mechtaev, Justyna Petke, Thomas Prideaux-Ghee, and Federica Sarro. 2023.
User-Centric Deployment of Automated Program Repair at Bloomberg. (2023). arXiv:2311.10516 [cs.SE]

[42] David H. Wolpert and William G. Macready. 1997. No free lunch theorems for optimization. IEEE Transactions on Evolutionary
Computation 1, 1 (1997), 67–82. https://doi.org/10.1109/4235.585893

[43] Fan Wu, Westley Weimer, Mark Harman, Yue Jia, and Jens Krinke. 2015. Deep Parameter Optimisation. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO 2015, Madrid, Spain, July 11-15, 2015, Sara Silva and Anna Isabel Esparcia-Alcázar (Eds.).
ACM, 1375–1382. https://doi.org/10.1145/2739480.2754648

[44] Jooyong Yi, Shin Hwei Tan, Sergey Mechtaev, Marcel Böhme, and Abhik Roychoudhury. 2018. A correlation study between automated
program repair and test-suite metrics. Empirical Software Engineering 23, 5 (2018), 2948–2979. https://doi.org/10.1007/s10664-017-9552-y

[45] S. Yoo and M. Harman. 2012. Regression testing minimization, selection and prioritization: A survey. Software Testing Verification and
Reliability 22, 2 (2012), 67–120. https://doi.org/10.1002/stv.430

[46] Yuan Yuan and Wolfgang Banzhaf. 2020. Toward Better Evolutionary Program Repair: An Integrated Approach. ACM Trans. Softw. Eng.
Methodol. 29, 1 (2020), 5:1–5:53. https://doi.org/10.1145/3360004

[47] Chenguang Zhu, Owolabi Legunsen, August Shi, and Milos Gligoric. 2019. A Framework for Checking Regression Test Selection Tools.
In Proceedings of the 2019 41st International Conference on Software Engineering (ICSE), Vol. 2019-May. 430–441. https://doi.org/10.1109/
ICSE.2019.00056

[48] Shengjie Zuo, Aymeric Blot, and Justyna Petke. 2022. Evaluation of Genetic Improvement Tools for Improvement of Non-Functional
Properties of Software. In Proceedings of the Genetic and Evolutionary Computation Conference Companion (Boston, Massachusetts)
(GECCO ’22). Association for Computing Machinery, New York, NY, USA, 1956–1965. https://doi.org/10.1145/3520304.3534004

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3360613
https://doi.org/10.1016/j.jss.2021.111174
https://doi.org/10.3390/app10051593
https://arxiv.org/abs/2311.10516
https://doi.org/10.1109/4235.585893
https://doi.org/10.1145/2739480.2754648
https://doi.org/10.1007/s10664-017-9552-y
https://doi.org/10.1002/stv.430
https://doi.org/10.1145/3360004
https://doi.org/10.1109/ICSE.2019.00056
https://doi.org/10.1109/ICSE.2019.00056
https://doi.org/10.1145/3520304.3534004

	Abstract
	1 Introduction
	2 Background
	2.1 Regression Test Selection
	2.2 Genetic Improvement and Efficiency

	3 Proposed GI with RTS approach
	3.1 Profiling
	3.2 Optimisation
	3.3 Validation Phase

	4 Research Questions
	4.1 RQ1. Safety
	4.2 RQ2. Effectiveness
	4.3 RQ3 – Efficiency
	4.4 RQ4 – Trade-Off

	5 Experimental Design
	5.1 GI Algorithms
	5.2 RTS Techniques
	5.3 Subject Programs
	5.4 Experimental Procedure

	6 Results
	6.1 Answer to RQ1 – Safety
	6.2 Answer to RQ2 – Effectiveness
	6.3 Answer to RQ3 – Efficiency
	6.4 Answer to RQ4 – Trade-Off

	7 Threats to Validity
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

