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Abstract
Software Engineering (SE) research involving the use of Large
Language Models (LLMs) has introduced several new challenges
related to rigour in benchmarking, contamination, replicability, and
sustainability. In this paper, we invite the research community to
reflect on how these challenges are addressed in SE. Our results
provide a structured overview of current LLM-based SE research
at ICSE, highlighting both encouraging practices and persistent
shortcomings. We conclude with recommendations to strengthen
benchmarking rigour, improve replicability, and address the finan-
cial and environmental costs of LLM-based SE.

CCS Concepts
• Software and its engineering→ Empirical software valida-
tion; • General and reference→ Empirical studies; • Computing
methodologies → Artificial intelligence; • Social and profes-
sional topics→ Sustainability.

1 Introduction
Despite the potential of Large Language Models (LLMs) to augment
human capabilities and streamline software development work-
flows, their integration into Software Engineering (SE) research
raises several critical concerns. For instance, benchmarking should
be performed systematically to ensure fair evaluation, particularly
given how potential data leakage from training corpora can skew
performance metrics [19]. Reproducibility and replicability prac-
tices should become mandatory to address the stochastic nature of
LLMs and the lack of standardised evaluation protocols [20]. Further,
efforts should be made to reduce the computational costs of training
and inference, both in terms of energy and infrastructure, which
pose significant barriers to accessibility and sustainability [10]. Ad-
dressing these challenges is crucial to harnessing the full potential
of LLMs while maintaining scientific rigour, ethical standards, and
equitable access.

To understand how our community is tackling the aforemen-
tioned challenges, we analyse the empirical research literature
published in the research track of the top SE conference, the In-
ternational Conference on Software Engineering (ICSE), between
2023 and 2025. We identified 177 relevant papers and manually
extracted several key pieces of information, including types of mod-
els used, experimental protocols, benchmarks, reported costs, and

other details relevant to empirical studies. We manually analysed
this information to establish:

RQ1. Models & Benchmarking. Which LLMs are used in SE
research and how are they benchmarked? We aim to assess whether
current studies provide reliable evidence of improvement over non-
LLM techniques and to highlight gaps where more rigorous evalu-
ation protocols are needed. We check (i) whether open or closed
models are used, (ii) model families, (iii) comparisons with non-LLM
baselines, and (iv) targeted programming languages.

RQ2. Contamination. How well do authors tackle the problem of
data leakage/contamination? Since data leakage and contamination
directly threaten the validity of empirical findings, we investigate
(i) whether authors mention data contamination as a threat and (ii)
any strategies proposed to mitigate contamination.

RQ3. Replicability.How replicable are LLM-based studies? Repli-
cability underpins scientific credibility. Given the stochastic nature
of model outputs, opaque APIs, and frequent model updates, we
identify (i) whether LLM configuration details are reported and (ii)
whether artefacts are shared and recognised with a badge.

RQ4. Sustainability. What are the costs of LLM-based SE re-
search? Training and deploying LLMs is resource-intensive, with
high financial and environmental costs. By examining how sus-
tainability is addressed, we aim to raise awareness of these hidden
costs and encourage the community to adopt more transparent,
responsible practices that balance innovation, accessibility, and en-
vironmental responsibility. We check (i) which experimental costs
are reported, (ii) the costs of LLM-based SE research, and (iii) how
they are sustained. We support these findings with a discussion of
57 responses to a questionnaire about experiment costs, which we
distributed to authors of the 177 relevant papers.

2 Methodology
To answer our RQs, we used a mixed-methods approach, integrat-
ing quantitative and qualitative data gathered through a literature
review and an author questionnaire. We incorporated temporal
analyses, where possible, to analyse how trends have shifted.

Article Search. The study was conducted on the 692 articles
published in the ICSE technical research track in 2023, 2024, and
2025, a period coinciding with the widespread adoption of LLMs
after the release of ChatGPT in late 2022. As the premier venue in SE,
ICSE sets the bar for methodological rigour and research quality

ar
X

iv
:2

51
0.

26
53

8v
3 

 [
cs

.S
E

] 
 1

9 
Ja

n 
20

26

https://arxiv.org/abs/2510.26538v3


ICSE-NIER ’26, April 12–18, 2026, Rio de Janeiro, Brazil Williams, et al.

in the field, meaning our insights can be regarded as a reliable
reflection of the community’s current priorities and practices.

First, we filtered the initial 692 papers based on the following
keywords: “LLM”, “language model”, “conversational AI”, “chatbot”,
“genAI”, “generative”, “AI-assisted”, “foundation model”, “BERT ”, “en-
coder”, “decoder”, “autoencoder”, “transformer”, and “agent”, retriev-
ing 304 candidates. Among these, we manually selected relevant
papersmatching the following inclusion criteria: articles that present
an empirical experiment involving at least one LLM, either as the main
approach or as a baseline. For instance, we exclude papers that focus
solely on qualitative insights from LLMuser studies.When referring
to LLMs, we use the definitions proposed by Fan et al. [7], namely
encoder-only (e.g., BERT, DeBERTa, RoBERTa), encoder-decoder
(e.g., T5, BART), and decoder-only (e.g., GPT, LLaMA, Claude). Our
selection followed a three-step process widely adopted in previous
surveys (e.g. [11, 15, 16]): (i) We excluded all papers whose titles
clearly did not meet our inclusion criteria; (ii) next, we checked
abstracts; (iii) finally, we reviewed the full content of articles re-
maining from the previous two steps and excluded those that did
not meet our inclusion criteria. This process resulted in 174 pa-
pers selected for data extraction. To mitigate the risks of missing
relevant papers, we (i) checked whether we missed any keywords
by computing word clouds from the abstracts of the 174 papers
(see [24] for full results), finding no additional relevant keywords;
(ii) randomly sampled 20% of the 388 papers not selected by our
keyword search for each year. This sample comprised 80 papers (32
for 2023, 28 for 2024, and 20 for 2025), which we manually inspected
using the process above. We found only three false negatives and
included them in the survey. Thus, we analyse 177 papers in total,
with the complete list available in our online repository [24].

Data Extraction. Next, we performed data extraction guided
by the RQs. We minimised the threat of data extraction and in-
terpretation bias by standardising the process for extracting and
consolidating data from the papers. We minimised the threat of
reviewer bias by involving at least two authors at each step of this
study. For each RQ, we identified the specific information to be col-
lected from the selected papers. To operationalise this, each author
was assigned a subset of papers and independently extracted the
required information. For reliability, we began with a pilot phase
where each author analysed four papers, then met to discuss the
extraction process, clarify ambiguities, and refine the extraction
schema. This process was repeated for a new set of four papers,
ensuring ambiguities were resolved before analysing the full set.

Once the extraction from all 177 papers was completed, the infor-
mation was consolidated into a unified taxonomy. This consolida-
tion was performed iteratively: one of the authors compared entries
across papers, standardised terminology, and grouped similar items
under common categories. Any uncertainties or disagreements
were resolved collaboratively among all authors to ensure consen-
sus. Finally, the resulting taxonomy provided a structured view of
how the ICSE community addresses benchmarking, contamination,
replicability, and sustainability, which served as the basis for our
subsequent analysis.

User Study. To better understand the costs incurred by the SE
research community for using LLMs in empirical studies, we devel-
oped a brief questionnaire and distributed it to the authors of rele-
vant papers included in our survey. This consisted of 10 questions

Table 1: Num. papers employing open & commercial models.

Year Only Open Only Comm. Open & Comm.
2023 22 / 32 (68.8%) 4 / 32 (12.5%) 6 / 32 (18.8%)
2024 25 / 55 (45.5%) 13 / 55 (23.6%) 17 / 55 (30.9%)
2025 24 / 90 (26.7%) 24 / 90 (26.7%) 42 / 90 (46.7%)
Total 71 / 177 (40.1%) 41 / 177 (23.2%) 65 / 177 (36.7%)

aimed at gaining insights into the costs incurred by researchers
using LLMs over the past year, how these costs were covered, and
their expectations regarding both aspects for the next 12 months.
Due to space constraints, the full questionnaire is available on-
line [24]. This study received approval from the ethics committee
of the Computer Science Department at UCL (Project ID: 1819).

3 Results & Reflections
We analysed 177 papers reporting empirical SE studies using LLMs:
32 from ICSE 2023, 55 from ICSE 2024, and 90 from ICSE 2025.
Although it is expected that the number of such studies would have
grown over the years, we observe that these studies accounted for
2.4 times as many articles published in the ICSE research track in
2025 compared to 2023 (36.6% vs. 15.2%).
RQ1. Models and Benchmarking

Open vs. commercial models. Our analysis reveals that 136 out
of the 177 relevant papers (76.8%) use open models (e.g., DeepSeek,
CodeT5), whereas 106 out of 177 papers (59.9%) consider closed
models (e.g., OpenAI’s GPT models, Google’s Gemini, Anthropic’s
Claude). Table 1 describes the prevalence of open and commercial
LLMs used in empirical LLM-based studies.

¬ Overall, there is an increasing use of closed models over time,
particularly in the number of studies that feature only closed or
commercial models. We raise this as a concern because commercial
models are typically less financially accessible to researchers, and
replicability is hindered as these models are frequently deprecated
when newer versions are released.

Model Family & Benchmarking.We examined the number of
papers that consider a particular model family. The top 5 families
of models used across all three years are: 1. GPT-4 (47 papers),
2. GPT-3.5 (44 papers), 3. CodeBERT (34 papers), 4. CodeLlama
(26 papers), and 5. CodeT5 (22 papers). A full table of the most
popular models per year (and additional analysis on how many
models were used in various papers) can be found in our online
appendix [24]. Most notably, we observe a significant shift toward
OpenAI’s commercial models from 2023 to 2025: while CodeBERT
was the most popular model in 2023 (featuring in 11 out of 32
papers, or 34%), by 2025 it appears in only 12 out of 90 papers (13%),
ranking fifth, whereas GPT-3.5 and GPT-4 feature in 39 (43%) and
45 (50%) papers, respectively.

For each study utilising an LLM to solve a given task, we checked
whether the LLM is benchmarked with at least one non-LLM ap-
proach. While the number of studies benchmarking their proposal
against non-LLM techniques has increased over time, the propor-
tion of studies that do so has decreased. Specifically, 27 out of 32
papers (84.4%) did so in 2023, 36 out of 55 (65.5%) in 2024, and 51
out of 90 (56.7%) in 2025.
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Table 2: Prevalence of the top 5 most popular targeted pro-
gramming languages for LLM-based empirical studies.

Language 2023 - 32 2024 - 55 2025 - 90 Total - 177
Java 14 (43.8%) 22 (40.0%) 31 (34.4%) 67 (37.9%)
Python 9 (28.1%) 18 (32.7%) 29 (32.2%) 56 (31.6%)
C 7 (21.9%) 11 (20.0%) 12 (13.3%) 30 (16.9%)
C++ 2 (6.3%) 9 (16.3%) 12 (13.3%) 23 (13.0%)
JavaScript 4 (12.5%) 3 (5.5%) 6 (6.7%) 13 (7.3%)

¬We observe a shift in the technologies adopted, from BERT-
based models in 2023 to GPT-based models in 2025. While the
adoption of more complex and costly technologies increases, there
does not seem to be a corresponding increase in benchmarking
them against non-LLM counterparts. This should be prioritised to
ensure the adoption of these technologies remains cost-effective.

Targeted Programming Languages.We examined the preva-
lence of programming languages (PLs) used in LLM-based empirical
studies and found that Java was the most popular language overall,
followed by Python, C, C++, and JavaScript. Interestingly, Table 2
shows that Java is becoming less common in studies over the years
(from 43.8% of studies in 2023 to 37.9% in 2025), while Python has
grown more popular (28.1% to 31.6%). In terms of evaluating across
multiple PLs, we see more concerning trends. Overall, only 27.1%
of papers evaluate with more than one PL. Notably, only 22.2%
of 2025 papers evaluate with more than one PL, compared to the
more positive results of 2023 (31.2%) and 2024 (32.7%). This trend is
problematic for replicability, as LLMs have been shown to perform
better on some PLs than others [21], implying that results reported
on one PL will not necessarily generalise to other PLs or contexts.

¬ To mitigate the risk of reporting potentially inflated perfor-
mance estimates, we urge researchers to, where possible, evaluate
novel LLM SE techniques on multiple programming languages.
RQ2: Contamination

Data contamination or leakage refers to the scenario where a
model is evaluated using data present in its training set, which can
lead to misleading results and inflated performance estimates [8,
19]. As LLMs are trained on vast, often closed-source corpora, it
can be challenging to determine whether an evaluation dataset is
contaminated. Regardless, papers should mention such cases as
threats to validity and discuss any strategies considered to address
and mitigate these issues.

We found that only three articles (two published in 2024 [2, 27]
and one in 2025 [17]) specifically tackle the problem of contami-
nation/memorisation. Moreover, only 58 out of 177 papers (32.8%)
discuss data contamination as a threat to validity. We observed an
upward trend in the number of papers reporting data contamina-
tion over the examined period from 2023 to 2025. Specifically, for
2023, contamination is reported in 6 out of 32 papers (18.8%), 14 out
of 55 (25.5%) for 2024, and 38 out of 90 (42.2%) for 2025. However,
despite the rising trend, the percentage of papers that mention such
threats remains below 50%.

Some papers acknowledged the issue of data contamination
without providing strategies to minimise the risk to the validity
of the results [1]. In other papers, a common approach to address-
ing contamination is temporal filtering, which involves collecting

data created after the training cutoff date of the evaluated mod-
els [12, 23, 25, 29]. For example, papers use datasets like GitBug-
Java [5], JLeaks [22], DebugBench [26], and ClassEval [29] that
were constructed specifically to minimise overlap. Another strategy
is benchmark design through obfuscation or perturbation, such as
OBFUSEVAL [30] or DS-1000 [18], which alters code or phrasing
while preserving functionality so that models cannot rely on mem-
orised examples. Data cleaning [17], data splitting [6], and dedu-
plication are widely used, with clone detection [27] employed to
eliminate duplicates across the training, validation, and test sets. In
many cases, experiments are replicated across multiple datasets or
with synthetic benchmarks specifically designed to minimise leak-
age risk. Data contamination is further mitigated by cross-dataset
evaluation [4] and ablation studies [9, 13, 22]. By evaluating on mul-
tiple benchmarks, including both classic and recently introduced
datasets, researchers can assess whether improvements hold be-
yond data that may be contaminated. Ablation studies, meanwhile,
demonstrate that performance gains stem from specific methods
or frameworks rather than from data memorisation, since results
drop when key components are removed.

Finally, reasoning-based safeguards, such as complex prompt-
ing [14] or zero-shot setups [28], help reduce the likelihood that
models succeed by recalling exact matches.

¬While no strategy can entirely eliminate the risk of contam-
ination when the training dataset is unavailable, we recommend
a combination of temporal filtering, benchmark design considera-
tion, deduplication, cross-dataset validation, and ablation studies
to greatly reduce its impact. These measures ensure results reflect
model capabilities rather than memorisation and provide the com-
munity with practical standards for trustworthy LLM evaluation.
RQ3: Replicability and Reproducibility

Model Configuration. While the total number of studies re-
porting on inference (generation) configuration remains relatively
low – 89 out of 177 papers (50.3%) – we observe a positive trend
over time: in 2023 10 out of 32 papers (31.2%) included details about
inference (generation) configuration; in 2024 this increased to 27
out of 55 papers (49.1%), and by 2025 52 out of 90 papers (57.8%).
This upward trajectory suggests growing awareness of the impor-
tance of documenting inference settings, although almost half of
the studies still omit them. Overall, we observe that model config-
urations are reported inconsistently across studies: some report
only training parameters, some only generation parameters, and
others report neither. While we acknowledge that page limits in
conference venues make it difficult to document all details, the
absence of such information significantly undermines replicability.

¬Tomitigate these shortcomings, we recommend that empirical
studies include, at a minimum, a permanent link to an external
appendix or artefact repository where prompts (along with their
rationale) and model configurations are described in detail. This
practice would not only enhance transparency but also ensure that
results can be meaningfully reproduced and built upon.

Artefact Availability. In our analysis, we find that 33 out of 177
(18.6%) of empirical studies involving LLMs received an “Artifact
Available” badge. This finding is in stark contrast to the remaining
515 articles published at ICSE, for which 213 badges were awarded
(41.4%), thus suggesting that authors conducting research involving
LLMs have been less proactive in submitting their contributions
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to the artefact evaluation tracks. We observe similar trends for
“Artifact Reusable” badges (11.9% LLM-based vs. 29.1% other) and
“Artifact Functional” badges (7.3% LLM-based vs. 13.6% other). Over
the three years examined, we observe a minor increase in the num-
ber of studies awarded availability badges. Per year, 6 of the 32
papers (18.75%) from 2023 have these badges, 9 out of 55 papers
(16.36%) in 2024, and 18 out of 90 papers (20.00%) in 2025.

We manually analysed the links to the artefacts provided in the
examined papers and found that nine papers contain expired links.
Of these nine, two had “Artifact Available” badges, and one even
had an “Artifact Reusable” badge.

¬ The community should actively promote the permanent avail-
ability of artefacts from LLM-based SE research and incentivise
researchers to submit their work to artefact evaluation tracks. Such
practices not only strengthen replicability and reproducibility but
also foster transparency, enable fair comparisons, and accelerate
cumulative progress in the field.
RQ4: Sustainability

Reported Costs. The most commonly reported cost across the
177 publications is the computational environment used to conduct
experiments, as detailed in 89 papers (50.3%). This entails the use of
dedicated hardware, such as GPUs (77 times) or, in 2 cases, TPUs.

Time is the next most frequently discussed cost, being men-
tioned 68 times. This includes any reported notion of time (e.g.,
total execution time or the time required for a single LLM invoca-
tion). Thirty-six publications (20%) reported both the computational
environment and time costs, which are necessary to estimate the
energy requirements for conducting experiments. This is an im-
provement over the 10.2% (30 out of 293 publications) reported by
Hort et al. [10], which considered LLM studies on code-related tasks
published up to 2022. However, we found no study that directly
reported the energy consumed or 𝐶𝑂2 emissions.

Monetary costs have been reported 18 times, with budgets up
to 3000$. Twelve publications reported the sizes of input or output
content (e.g., number of tokens or files) processed by LLMs, which
dictate the incurred costs. Less frequent cost categories include
memory requirements (6 times), number of LLM invocations (3
times), and number of floating point operations (1 time).

¬ We encourage authors to clearly report the actual costs in-
curred to perform experiments, as well as estimates for the costs
associated with using the proposed approach in practice over time.
To raise awareness of sustainability matters, we believe this should
become a standard practice required by conferences and journals,
as is already the case for data availability.

User Study. We received 57 responses to our questionnaire. 95%
of participants used commercial models in the past 12 months, and
89% said they are very likely (65%) or likely (24%) to use them in the
next 12 months. However, the majority (56%) do not know whether
they will be able to sustain the costs over time, and 9% believe that
they will not be able to do so at all. In contrast, 82% of participants
used open models in the last 12 months, and 95% said they are
very likely (89%) or likely (6%) to use them in the next 12 months.
Most participants (57%) believe they will be able to sustain the
hardware costs required to run open models over time, while 38%
are uncertain, and only one (2%) says they will not be able to.

Participants reported spending as little as $200 to as much as
$50,000 on commercial models in the last 12 months. For open-
source models, researchers generally do not incur any direct costs.
However, the hardware costs to run these models can be high,
depending on usage goals (e.g., inference, training, fine-tuning),
and our respondents reported spending from $3,000 to $40,000 to
buy such hardware in the last year. Many mentioned electricity
costs, yet none provided a monetary value, either because their
institutions cover them or because they are difficult to measure.

When asked how they plan to sustain these costs in future, the
participants gave very similar responses for commercial and open
models: They plan to rely on a combination of academic funding
such as research grants (36% for commercial, 37% for open), aca-
demic institutional support (26% and 28%), industrial support in the
form of free credits and collaboration (24% and 19%), and some are
willing to use their own personal funds (12% and 9%).

¬ While researchers are adopting both commercial and open
models, costs are a pressing concern. Nearly all participants used
commercial models in the past year and intend to continue, yet
most are unsure whether they can afford long-term usage due to
API fees. Open models are also widely used, but researchers remain
optimistic about sustaining their costs. Still, the bottleneck lies in
the steep hardware and energy costs for inference and fine-tuning.

4 Conclusions & Future Plans
The findings from our systematic review of ICSE publications high-
light concerning trends in the reproducibility and sustainability
of experiments using LLMs, echoing claims made in other meta-
studies exploring the challenges of LLM-based research [3, 20].

In future work, we plan to deepen our analysis to cover addi-
tional empirical aspects, such as the clarity and rigour of reporting
on prompts and datasets used. Further, we aim to tackle additional
ethical and social factors, including whether the costs and infras-
tructure demands of LLMs are enabling a digital divide in the field,
particularly between well-resourced and low-resourced institutions.

Ultimately, we aim for our work to contribute to the emerging
efforts by the wider community towards developing unified, action-
able guidelines for the responsible and sustainable use of LLMs in
software engineering research.
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