Speeding Up Genetic Improvement via Regression
Test Selection

GIOVANI GUIZZO, DAVID WILLIAMS, MARK HARMAN, JUSTYNA PETKE,
and FEDERICA SARRO, University College London, London, United Kingdom

Genetic Improvement (GI) uses search-based optimisation algorithms to automatically improve software
with respect to both functional and non-functional properties. Our previous work showed that Regression
Test Selection (RTS) can help speed up the use of GI and enhance the overall results while not affecting
the software system’s validity. This article expands upon our investigation by answering further questions
about safety and applying a GI algorithm based on Local Search (LS) in addition to the previously explored
Genetic Programming (GP) approach. Further, we extend the number of subjects to 12 by analysing five larger
real-world open-source programs. We empirically compare two state-of-the-art RTS techniques combined with
GP and LS for these 12 programs. The results show that both RTS techniques are safe to use and can reduce
the cost of GI by up to 80% and by 31% on average across programs. We also observe that both search-based
algorithms impact the effectiveness gains of GI differently, and that various RTS strategies achieve differing
gains in terms of efficiency. These results serve as further evidence that RTS must be used as a core component
of the GI search process to maximise its effectiveness and efficiency.

CCS Concepts: « Software and its engineering — Software testing and debugging; Software performance;
Genetic programming;

Additional Key Words and Phrases: Genetic Improvement, Regression Test Selection, Search-Based Software
Engineering

ACM Reference format:

Giovani Guizzo, David Williams, Mark Harman, Justyna Petke, and Federica Sarro. 2024. Speeding Up
Genetic Improvement via Regression Test Selection. ACM Trans. Softw. Eng. Methodol. 33, 8, Article 196
(November 2024), 31 pages.

https://doi.org/10.1145/3680466

1 Introduction

Genetic Improvement (GI) involves using search-based techniques to automatically improve
existing software properties [32]. The properties under improvement can be functional (e.g., bug

This research is funded by the ERC advanced fellowship Grant 741278 (EPIC: Evolutionary Program Improvement Collabo-
rators) and by the EPSRC Fellowship Grant EP/P023991/1 (Automated Software Specialisation Using Genetic Improvement).
For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) license to any accepted
manuscript version arising.

Authors’ Contact Information: Giovani Guizzo, University College London, London, United Kingdom; e-mail: g.guizzo@
ucl.ac.uk; David Williams, University College London, London, United Kingdom; e-mail: david.williams.22@ucl.ac.uk; Mark
Harman, University College London, London, United Kingdom; e-mail: mark harman@ucl.ac.uk; Justyna Petke, University
College London, London, United Kingdom; e-mail: j.petke@ucl.ac.uk; Federica Sarro (Corresponding author), University
College London, London, United Kingdom; e-mail: f.sarro@ucl.ac.uk.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
ACM 1557-7392/2024/11-ART196
https://doi.org/10.1145/3680466

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

https://orcid.org/0000-0001-5361-2973
https://orcid.org/0009-0004-9828-2639
https://orcid.org/0000-0002-5864-4488
https://orcid.org/0000-0002-7833-6044
https://orcid.org/0000-0002-9146-442x
https://doi.org/10.1145/3680466
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3680466

196:2 G. Guizzo et al.

fixing [1, 24, 41, 46]) or non-functional (e.g., runtime [8, 23, 33], memory usage [35, 43] and energy
consumption [5, 6, 36]). The level of improvement of a property is measured by a fitness function,
which guides the search towards better software over multiple iterations. At each iteration, the GI
technique generates multiple software variants potentially better than the original software w.r.t.
the fitness function, but must preserve the desired software behaviour (i.e., pass the tests in the
software’s test suite). If a software variant fails any functional tests, it is deemed invalid.

Despite GI's appealing benefit of automatically improving software properties, as one can infer,
the process of generating and testing many variants of a given software is computationally expensive
[8, 29, 34, 40], especially when the software has a costly test suite. Even for programs with relatively
small test suites, GI executions can take many hours or even days of computation [28]. One solution
for this high cost is to select and execute only a subset of test cases relevant to the modifications
made in the variant instead of executing the entire test suite. We have shown in a preliminary work
[16] that this can be achieved with the use of well-established Regression Test Selection (RTS)
techniques [45].

RTS has been extensively studied in the Software Engineering (SE) literature [45], with the
primary purpose of selecting subsets of tests from a test suite to allow for a more efficient regression
test process. Such techniques typically determine dependencies for tests (e.g., based on which parts
of the source code they reach) and focus on selecting “affected tests,” or tests dependent on the
changes made in the program’s latest revision. RTS differs from Regression Test Minimisation (which
permanently removes redundant test cases from the test suite) and Regression Test Prioritisation
(which defines a test case order for testing) because it selects a subset of test cases for the imminent
testing task based on the context of the changes.

In our previous work [16], we hypothesised that existing RTS techniques can be powerful assets
for improving the effectiveness and efficiency of the whole GI process, and we carried out an
empirical investigation on the effects of RTS on the non-functional GI process by considering
various contexts and tradeoffs in different scenarios. Our experiments consisted of three RTS
techniques (one random, one dynamic and one static technique), one GI algorithm based on Ge-
netic Programming (GP) [20], and seven real-world open-source projects from the Apache
Commons suite.! Such investigation was crucial because, until then, we did not know the effects
RTS had on the effectiveness (i.e., to which extent it affected the capability of GI in finding bet-
ter variants), efficiency (i.e., to which extent it reduced the cost of GI more than it introduced
overhead) and safety (i.e., to which extent the generated variants deemed valid would still be
valid when tested against the whole test suite) of GI. Our previous work showed that RTS is
not only safe, but can even significantly speed up the overall GI process by up to 68%. Surpris-
ingly enough, speeding up the GI execution also led to better-improved software variants because
the algorithm could spend the spared resources on finding new variants rather than executing
unrelated tests.

However, our previous work did not address the usage of various GI algorithms, opting only
to consider GP in those experiments. Depending on the type of algorithm used to search for
improved software variants, different RTS techniques may be more suitable or display different
outcomes. Moreover, although the Apache Commons suite comprises many well-known and large
software, there is still room for improvement in the generalisability of our findings. In order to close
these research gaps, in this article, we extend our previous work by including Local Search (LS)
[4, 13, 19] as an additional GI algorithm as well as five larger open-source programs, making a total
of 12 real-world software investigated herein. This work does not only extend the type and number

https://commons.apache.org/

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

https://commons.apache.org/

Speeding Up Gl via Regression Test Selection 196:3

of algorithms and programs, but also enriches our previous set of Research Questions (RQs) with
new sub-questions, which have been designed to comprehensively tackle all aspects involved with
the multiple RTS techniques and GI algorithms regarding safety, effectiveness and efficiency, as
well as tradeoffs encountered in the GI process. By answering these questions, we aim to present
a more detailed overview of the benefits and drawbacks of each RTS technique in the context of
non-functional GI using different types of search algorithms.

Our results show that both state-of-the-art RTS techniques we employed (Ekstazi [14] for dynamic
RTS and STARTS [27] for static RTS) are safe to use in conjunction with GI. Ekstazi successfully
selected all fault-revealing test cases in all of its 480 independent GI executions, while STARTS
neglected a fault-revealing test case only once out of its 440 runs. Considering effectiveness,
roughly half of the time (54.4%), GI with RTS maintained the same level of program variant runtime
improvement as GI without RTS. Further, RTS even provided a benefit (a better level of improvement
relative to that of the average variant generated without RTS) in 30.4% of cases. However, its impact
on GI efficiency is where RTS truly shone in our results, where we found that RTS could reduce the
cost of the entire process by up to 80% for some programs, providing a significant speed up in 83.3%
of cases. Ekstazi provided a median execution time reduction of 31%, whereas that of STARTS was
only 6%. Across our entire experimentation, the cost of GI+Ekstazi was less than half of GI, saving
over six weeks (or 1,000 hours) of computational resources. This observation, combined with our
safety and effectiveness findings, makes us believe that RTS is essential for a more sustainable GI.
Additionally, we noted which factors influence GI performance more significantly when analysing
impacts on effectiveness and efficiency. For instance, we found that effectiveness results depended
more on the search algorithm in use, while switching RTS techniques had the greatest impact on
efficiency. Finally, our work presents the tradeoffs of adopting each algorithm-RTS combination.
While we determined that GI+Ekstazi using GP was our recommendation as the most balanced in
tradeoffs for most scenarios, we provide insights allowing engineers to choose which combination
would best suit their needs based on priorities such as best improvement, fastest improvement and
diversity of program variants generated by the GI process.

In summary, the main contributions of this paper are:

—Large-scale experimentation with 12 open-source software, three RTS techniques and two
state-of-the-art GI search algorithms.

—Comprehensive quantitative and qualitative result analysis, comparing algorithms and RTS
techniques with three different metrics and two statistical tests.

— Answers to multiple RQs designed to evaluate the impact of RTS on GI from many application
angles.

—Provision of our GI and RTS source code as an open-source software available at: https:
//github.com/gintool/gin.

—Provision of a replication package, available at: https://figshare.com/s/52a5092425c64648467e.

2 Background
This section presents the background on the two main topics of this paper: RTS and GL

2.1 RTS

Regression Testing concerns assessing whether the software’s pre-existing behaviour is impaired
by a given change [45]. Conventionally, the software is tested against its entire test suite when-
ever a new change is performed. However, as the test suite grows in complexity and size, the
cost of such re-testing becomes infeasible. To avoid the re-execution of the whole test suite and
consequently speed up the regression testing process, researchers have proposed many regression

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

https://github.com/gintool/gin
https://github.com/gintool/gin
https://figshare.com/s/52a5092425c64648467e

196:4 G. Guizzo et al.

testing strategies [45]. Among these strategies, the most common are test suite minimisation, test
case prioritisation and test case selection.

Test suite minimisation aims to permanently remove irrelevant, redundant, or obsolete test
cases from the test suite. Test case prioritisation focuses on re-ordering the test cases during their
execution such that faults are detected earlier in the testing process. Finally, RTS techniques select
only a subset of test cases to execute when a new change to the software is performed. The main
goal of RTS is to avoid the execution of test cases that are unable to reveal faults in the modified
code. Unlike test suite minimisation and test case prioritisation, RTS relies on information about
the changes made between software versions (or variants, in the context of this work). As this work
focuses on RTS, the following presents it in more detail.

According to Yoo and Harman [45], an RTS technique must select a subset of test cases 77 from
the whole test suite T that contains all available test cases able to reveal faults in a given program
variant p” of the original program p. A test case t is fault revealing in relation to p and p’ if ¢ yields
different outputs for both versions (¢(p) # t(p’)), meaning t needs to be executed against both
variants. Assuming that ¢(p) halted and produced the correct result, ¢t will only be able to reveal a
fault in p’ if t traverses the modified code of p’ or used to traverse a now deleted piece of code in
p’. Therefore, if an RTS technique selects all available test cases in T that traverse modifications in
p’, then such a technique is called safe. In other words, an RTS technique must avoid the execution
of irrelevant test cases in relation to the modifications performed in the software. In the context of
this work, a “relevant” test case should (i) traverse the modified code, (ii) create a state of error in
the System Under Test (SUT) and (iii) reveal this erroneous state as a failed assertion. A test case
may be considered irrelevant if it fails to meet any of these three conditions. However, due to the
difficulty of checking the second and third conditions, RTS tools typically only select tests based
on the first requirement. Thus, the RTS techniques used in this work select affected tests (those
transitively dependent on the modified code) rather than relevant ones.

In this article, we employ three RTS techniques: a random selection technique, a modification-
based technique using dynamic analysis, and a firewall approach based on static analysis [45]. The
random technique selects test cases at random without any additional information and is only used
as a baseline. The dynamic approach is implemented by the Ekstazi tool [14], while the firewall
one is implemented by the STARTS tool [27]. Ekstazi implements a three-phase process to select
affected test cases. The first phase (analysis) involves discarding unaffected tests by considering
each test class and seeing whether all of its dependent classes’ checksums have remained the same
since the previous execution. If a test class meets this condition, it is not selected for testing. The
second phase (execution) runs the remaining tests. The third phase (collection) can be done in
parallel to the second or sequentially at a later point, and involves instrumenting the bytecode
and recording which classes are accessed when each test case is executed. Ekstazi computes the
checksum for the list of files associated with each test class and stores it alongside the dependencies
for the next analysis phase.

Conversely, STARTS [27] employs a static approach for RTS based on the concept of class firewalls.
A class firewall for a given class C is the set of classes that could be affected if C is modified [22].
STARTS computes class firewalls using a Type-Dependency Graph (TDG), delimiting which
types need to be retested after a code change. Type dependencies are determined using the constant
pool for each classfile, and the TDGs are constructed from this data in a type-to-test dependency
file. To select impacted tests, STARTS uses the same checksum function as Ekstazi to check whether
any types have been modified and returns the set difference between the latest test suite and the
set of test cases not associated with the changed types. Similarly to Ekstazi, the TDG computation
phase for the following execution can be run either in parallel to the other steps or later.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

Speeding Up Gl via Regression Test Selection 196:5

We selected these tools for our experiments as both have been extensively evaluated in literature
[7, 16, 26, 37, 38, 47] and have shown to produce safe results with low execution costs. For example,
Chen and Zhang [7] used RTS tools to speed-up Mutation Testing and have shown that both tools
are able to select the appropriate test cases for a given mutant. In our preliminary work [16], we
followed this intuition that RTS can be used for more than just Regression Testing. We applied RTS
within the GI process and obtained conclusive evidence of the benefits it can provide in such a
context.

2.2 Gl and Efficiency

GI consists of using search-based techniques to improve the properties of an existing software [32].
Search-based algorithms use intelligent heuristics to search for approximate solutions for a given
problem when the exact optimum solution cannot be found in a feasible time [13]. GI is part of
the more general field of Search-Based SE [18], which aims to solve hard SE problems through the
application of search algorithms.

During the GI optimisation process, a search algorithm searches for software transformations
(i.e., patches) that can improve a set of functional or non-functional software properties. Functional
improvement is usually associated with Automated Program Repair (APR) [12, 29, 34], which
consists of, as the name implies, searching for transformations that can repair faults in a program.
Non-functional improvement, on the other hand, focuses on finding transformations that maintain
the functional behaviour of the software while also improving properties such as memory usage
[35, 43], execution time [8, 23, 33], energy consumption [5, 6, 36] and others. In both cases, the
functional behaviour of software is measured by the test suite, i.e., if all test cases pass after the
transformation, then the GI algorithm assumes that the existing behaviour is maintained. Test
case execution is also used as a source of information for the non-functional properties, e.g., test
case execution time being used as a measure of runtime improvement. All of this information is
incorporated into a “fitness function” that guides the search process towards solutions that are
more fit for solving the given problem.

In non-functional GI, each iteration results in a set of patches, which are then used to attain
new software variants that are potentially better than the original w.r.t. fitness function mea-
surement. As previously mentioned, such variants are executed against the test suite to gather
execution information and compute the fitness. Since the search process is stochastic and based
mainly on trial and error (a variant can be worse than the original program), the search for
software variants is performed throughout numerous iterations, each imposing the cost of ex-
ecuting the test suite against the candidate solutions. As one can infer, the cost of such a pro-
cess quickly becomes prohibitive, especially when the test suite is computationally expensive
[16, 29, 34].

In order to speed up the GI process, some tools [4] already implement a few strategies, such
as in-memory compilation that removes the writing and reading of source files before compiling.
Another common strategy is to specifically target only relevant methods and classes, e.g., APR
tools usually trace failing test cases and only focus on repairing classes that the test cases reached.
On the other hand, non-functional GI tools perform profiling in a preliminary step to find costly
pieces of code to improve. Nevertheless, such tools still can take several hours or days of execution,
even for relatively small programs [25, 28].

As shown in our previous work [16], selecting fewer test cases during the evolutionary process
is a viable way of further reducing the cost of evaluating programs. In this study, we performed
an initial evaluation of the impact of RTS on multiple GI aspects, such as effectiveness, efficiency,

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

196:6

Legend
Input p

P - program under improvement
P set of program variants of p

i Input T ;

P"- set of program variants of P'
T- test suite of p

Profiling

T'- selected test suite (T'< T)

- RTS strategy

Hot Methods &
Related Tests

/' File Dependency -
Metadata

| AttachRTS !

strategy s

—P[Build p]—)[Execute T(p)]—owpm
QJ ; |

with s

G. Guizzo et al.

Gl Optimisation

Create initial
population P’

4[

Forallp'e P Evaluate fitness
run T(p) forallp'e P'

Evaluate fitness
for all p" € P"

1.1

Replace P'with
best of P"U P

T

Forallp'e P'
Stopping
condition?

run T(p)
Yes

—

Forall p"€ P"
run T(p")

generate P"

Perturbate P'to
peP

Return best]

Forall p"€ P"

L T)

1

/ Inputs /'

. Output 7" /' v

Fig. 1. Gl process of the Gin tool and proposed steps to allow the usage of RTS.

safety and the tradeoff an engineer has to face when choosing an RTS technique. However, there
are still a few unanswered questions in this context, such as:

(1) How do RTS techniques behave with different types of GI algorithms?
(2) Which GI algorithms can benefit the most from RTS cost reduction?
(3) Which GI algorithms provide the most cost-effective search when using RTS?

The following section describes how we enhanced GI to use RTS and presents the main challenges
and benefits.

3 Proposed Gl with RTS Approach

The findings of our previous study [16] indicated that incorporating RTS in the GI process has the
potential to dramatically reduce computational resource requirements, saving more than a third of
the execution time during experiments compared to GI without RTS (from 180 hours to 116 hours).
We adopt a similar approach in this work, intending to further investigate GI performance with RTS
and which factors are most impactful. For our experiments, we use Gin [4], a GI tool for the improve-
ment of Java programs. Gin has two main phases: profiling and optimisation. Figure 1 presents the
general process of applying Gin with all its phases and which additional features we implemented to
enable the usage of RTS. Essentially, the RTS techniques are incorporated as part of Gin’s profiling
phase, allowing the RTS tools to determine which tests are relevant to execute when targeting dif-
ferent methods for non-functional improvement. Thus, when Gin generates and develops program
variants, these are evaluated using the subset of test cases selected by the RTS tools (as opposed
to the entire test suite). For an in-depth description of Gin’s approach to GI without RTS, please
refer to its introductory paper by Brownlee et al. [4]. The following subsections will describe each
of the major phases in Gin and how these phases are affected by the integration of RTS strategies.

3.1

In the initial phase, profiling, the main goal is to capture execution information about test cases and
tested methods from the unmodified program p. This is a one-time operation where p is compiled,
and the entire test suite T is executed. During its execution, Gin uses either Java Flight Recording
(JFR) or hprof (used in this work) to sample which methods are executed during testing. Specifically,
Gin records each tested class and method, which tests were used for profiling, the number of times
a method was executed by the tests, and the execution time of the entire profiling procedure. From
this sampling, it generates a list of methods and assigns a list of associated test cases to each method.
This execution information is stored in a CSV file for use in the second phase (optimisation). Further,

Profiling

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

Speeding Up Gl via Regression Test Selection 196:7

Gin identifies “hot methods,” i.e., costlier methods in terms of execution time that are more likely
to benefit from the GI optimisation. Without RTS, the resulting CSV file contains a list of all test
cases related to all methods identified by JFR or hprof.

Since most RTS techniques [14, 27] require a complete execution of the test suite T before
performing test case selection, we incorporate the RTS techniques during Gin’s profiling phase.
For Ekstazi (dynamic RTS), the tool’s Java agent is incorporated during the testing phase of Gin’s
profiling. This allows Ekstazi to collect detailed information from the test case execution traces,
but also makes it compulsory to execute the entire test suite at least once during profiling. In the
case of STARTS (static RTS), Gin includes the Abstract Syntax Tree analysis during build time.
Unlike Ekstazi, STARTS using static analysis means test suite execution during the profiling phase
is not required. Since both RTS tools generate their output in proprietary formats, Gin captures
their results and parses them to a standardised format (identical to that of the CSV files generated
without RTS) before concluding the profiling phase. The result is a reduced test set T’ C T for each
hot method, specifically tailored to avoid the execution of unaffected test cases that would not be
able to reveal faults in a method, given that it is modified during the GI process. This information
about the combination of hot methods-test sets replaces the original trace information of Gin.
It should be noted that Ekstazi and STARTS have different levels of granularity than Gin’s profiling
phase when selecting test cases. Gin functions at a method level, while STARTS and Ekstazi can
only associate test cases at a class level. Gin handles this mismatch in granularity conservatively
by assigning all tests selected for a given class to each of its methods.

3.2 Optimisation

The second phase, optimisation, consists of the actual GI process, where a given algorithm searches
for program variants (P’). Gin focuses on optimising one method at a time, usually the costliest
one identified in the profiling phase.

The first step is to generate a random initial population P’ of program variants (solutions). Gin
works with a patch representation (chromosome) for the solutions, i.e., it searches for patches
that modify the original program p to transform it into a potentially improving variant p’ € P’.
The patch is represented by a sequence of edits (genes) containing the edit operation and targeted
code statement. The available edit types are: (i) Delete—deletes a statement; (ii) Copy—copies a
statement; (iii) Replace—replaces a statement with another existing one and (iv) Swap—swaps two
existing statements. Hence, each initial solution p’ consists of a patch with a single random edit to
the original program.

The second step is to run the test suite T on all solutions p” € P’. Since a patch cannot be executed
against the test suite, Gin first applies the patch to the code, performs an in-memory compilation
of the modified source code, and then executes the test suite against the modified program. If an
RTS technique is used during the optimisation phase, instead of running all test cases in T, Gin
uses the reduced test set T’ selected specifically for the method under improvement. The results of
the test case execution are stored and used in the next step, the fitness evaluation.

Since we focus on the non-functional improvement of runtime execution, the fitness function is
the difference in execution time between the original program p and the program variant p’ using
the test suite T

1 fitness(p’, T) = runtime(T(p)) — runtime(T(p’)). (1)

When an RTS technique is being used, Gin uses the runtime of the reduced test set T’ to perform
the fitness evaluation

1 fitness_rts(p’, T") = runtime(T’ (p)) — runtime(T'(p")). (2)

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

196:8 G. Guizzo et al.

The original program is also tested against T’ as it would be misleading to compare the runtime
of the entire test suite T for p and that of T’ for p’. The objective of the optimisation is to find the
variant p’ that maximises this function. If the program variant p’ does not pass the test cases (i.e.,
it contains a fault due to the patch applied to the code), Gin assigns it the maximum possible value
(Double. MAX_VALUE) as its execution time, resulting in very low fitness value for p’ according
to Equation (2). This mechanism guides the GI algorithm towards programs that maintain the
functional behaviour of the software since a fast but faulty program is undesirable in the context of
non-functional GI. Additionally, if Gin is unable to find any test-passing variants, it simply outputs
the original program.

Next, Gin starts the iterations (generations) and continues until the stopping criterion is met,
which is a fixed number of generations set as a parameter by the engineer. In each generation, the
first step is to perturbate the solutions in the population P’ and generate a new offspring population
P”. This step is where the search algorithms implemented in Gin differ.

The GP [20] algorithm is based on Genetic Algorithms (GA) [9] and performs two perturbations,
crossover and mutation, to generate an offspring population P” of size |P’|. Gin uses its own
version of the Uniform Crossover operator [15] to generate new solutions. First, it selects two
parent solutions p] and p; from P’. Then each edit (gene) has a given probability 0 < & < 1 of
being copied from p] to the first child p]" and from p; to the second child p’, in the order they
appear in the parents. Then, the edits of the other parent are copied to the other child with the
same probability a. After performing the crossover, Gin applies the mutation operator with a given
probability 0 < < 1 to the children P” to introduce new random edits. The goal of the crossover
operator is to carry genetic information from the parents to the children, whereas the mutation
operator is used to introduce diversity into the population.

Unlike GA, the LS algorithm [4, 13, 19] does not use crossover, but rather a more simplistic
approach to generate an offspring population P” of size one. Starting from the best solution p” € P’
found so far, it mutates p’ to generate a single solution p”’. It works by searching for “neighbour”
solutions p”’ of the best one p’, instead of generating offspring from the global population P’, hence
the name “local”. The advantage is a more exploitative strategy, which can be effective in complex
problems such as non-functional GIL.

Regardless of how the solutions are generated, whether with GP or LS, the next step is to execute
the test cases on the newly generated offspring population P”’. Similarly to the initial population
evaluation, each solution p”” € P” is executed against the entire test suite T or against the test case
subset T’ when an RTS technique is used. The execution information is then used to compute the
fitness of all p”’ € P”. After the fitness evaluation, the replacement operation occurs, which joins
both P’ and P" and selects the best solutions in the union to survive and become parents (P’) in
the next generation. When the stopping condition is met, Gin outputs the best variant p’ w.r.t. the
fitness function.

3.3 Validation Phase

When using RTS, one must perform an additional procedure in order to validate whether the RTS
technique discarded important tests that could reveal faults in the program variants. In other words,
since we only use a subset of test cases T’ of T during the optimisation phase, it may be the case that
a program variant deemed as valid during optimisation (passes T”) is in fact faulty (does not pass T).
To achieve this, we re-execute all the valid program variants found during optimisation against the
entire test suite T and record the results. During this step, we also record the real improvement
obtained in relation to T and the execution time needed to perform this task.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

Speeding Up Gl via Regression Test Selection 196:9

In this article, we conduct extensive experimentation to assess how feasible our proposed
approach is, taking into account the safety and other effects RTS techniques may have in the
context of GI. The following section details the RQs used to guide the experimentation of our work.

4 RQs

The experiments of this work are designed to answer the following RQs:

—RQL1. Safety: How safe is RTS in the context of non-functional GI?
RQ1.1. RTS Comparison: How safe are different RTS techniques?
RQ1.2. Algorithm Comparison: How does RTS technique safety impact the output of different
GI algorithms?

—RQ2. Effectiveness: How does the use of RTS impact the effectiveness of non-functional GI?
RQ2.1. RTS Comparison: How is GI effectiveness affected by different RTS techniques?
RQ2.2. Algorithm Comparison: How do different GI algorithms benefit from RTS in terms of
effectiveness?

—RQ3. Efficiency: What is the efficiency gain when using RTS with GI?

RQ3.1. RTS Comparison: How is GI efficiency affected by different RTS techniques?
RQ3.2. Algorithm Comparison: How do different GI algorithms benefit from RTS in terms of
efficiency?

—RQ4. Tradeoff: What is the tradeoff between efficiency and effectiveness of the GI process with

various RTS strategies in different application scenarios?

Since we use multiple algorithms and RTS techniques in our experimentation, we also aim to
analyse the different application contexts in more depth. Therefore, for all RQs, we create sub-RQs to
compare the algorithms’ performance and whether these results vary with different combinations
of RTS and algorithm types. Furthermore, we analyse the results in terms of software variant
runtime improvement. Thus, non-functional GI is hereby defined as GI for runtime improvement
during software execution. In the following subsections, we describe and motivate each RQ in the
context of our work.

4.1 RQ1—Safety

How Safe is RTS in the Context of Non-Functional GI?—This question is designed to evaluate the
safety of the RTS techniques when used in conjunction with GI. As defined in Section 2, an RTS
technique is considered “safe” if it selects all the test cases from the test suite that can reveal the
potential faults in the modified program. In this context, we are concerned that the RTS techniques
may discard affected test cases that could reveal a fault in a given program variant. If this is the case,
the GI algorithm will wrongfully deem faulty program variants as functionally adequate due to the
RTS technique failing to select important test cases, rendering its application infeasible in practice.
Thus, after finishing the evolutionary process of GI with the reduced test set, we execute the best
obtained variants against the entire test suite to check for faults, as described in Section 3.3.

It is important to note that, although the test suite is a crucial indicator of the presence of faults
in a given program, it cannot prove the absence of faults, i.e., the program’s correctness [10]. This
is discussed further in Section 7. Hence, herein, safety is defined as the adequacy of the program
w.r.t. the expected behaviour represented by the entire test suite, rather than the correctness of the
program. This concept of adequacy also extends to the use of the term “valid” throughout this text.
A given program variant p’ is valid if it passes all test cases in the original program p test suite T.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

196:10 G. Guizzo et al.

In order to measure the level of safety of a given RTS technique, we define the “Relative Safety”
(RS) measure as follows:

CrS(y. 1) — Passing T @) "
IT|

where |T| is the number of test cases in the test suite T of a program p; and |passing(T (p”))]
is the number of passing test cases in T when executed against a given program variant p’ of p.
In other words, this measure calculates the percentage of test cases in the entire test suite T that
pass when executed against a given program variant p’. Therefore, the greater the RS, the safer the
technique is.

Such variant p’ is obtained from the GI algorithm execution, which is the best (greatest fitness)
adequate variant (passes all test cases selected by the RTS technique) found during the evolutionary
process. The only (reasonable) assumption for RS is that all tests in T pass when executed against p.
This is a common pre-requisite in non-functional GI [4, 16], since the GI algorithm may not yield
valid variants if the original program is faulty.

In order to answer sub-RQs 1.1 (how safe are different RTS techniques?) and 1.2 (how does RTS
technique safety impact the output of different GI algorithms?), we compare the results by RTS
strategy and by algorithm used respectively. The objective is to unveil differences in the impact
of RTS by the multiple techniques used in our experiments. We answer each sub-RQ individually
alongside the more general RQ answer.

4.2 RQ2—Effectiveness

How Does the use of RTS Impact the Effectiveness of Non-Functional GI?—We further analyse the
experiment results to unveil the potential effects of using RTS on the improvement capabilities of GI.
In other words, we want to analyse to what extent the RTS techniques affect the final non-functional
improvement in runtime obtained by the GI algorithms. Since the RTS techniques aim to speed
up the evolutionary process, and the fitness function precisely measures the speed up of program
variants, we expect to find results significantly different from the conventional GI process without
RTS. To this end, we define the “Relative Improvement Change” (RIC) measure as follows:

runtime_improvement(T(p’, p))

TRIC(p',T) = ©

runtime_improvement_avg(T(P”, p))’

where runtime_improvement (T (p’, p)) is the runtime improvement (fitness value) of a valid variant
p’ obtained by GI with RTS compared to the runtime of the original program p; P” is the set of
all valid variants obtained from the GI algorithm without RTS; and runtime_improvement_avg
(T(P",p)) is the average runtime improvement relative to p for all variants p”’ in P”’

runtime_improvement(T(p”, p))
[P '

This average improvement acts as a reference point to determine how RTS affects the (runtime)
performance of program variants obtained through GI. Thus, the greater the RIC value, the better,
and for a given variant p’, an RIC value larger than one indicates p” performs better than a typical
variant computed using GI without RTS. All improvements are computed with the whole test
suite T.

In summary, RIC measures the proportional improvement gain of a given variant p’ compared
to the average improvement gain without RTS. Therefore, if RIC > 1.0, it means that the variant p’
obtained using GI with RTS has a better level of improvement on average than when not using
RTS. If this is the case, then using RTS enhances the improvement capabilities of GI. If RIC < 1.0,
using RTS negatively impacts such capabilities.

®)

runtime_improvement_avg(T(P", p)) =

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

Speeding Up Gl via Regression Test Selection 196:11

Similarly to RQ1, we perform additional comparisons to answer sub-RQs 2.1 (how is GI effective-
ness affected by different RTS techniques?) and 2.2 (how do different GI algorithms benefit from RTS
in terms of effectiveness?). The objective is to check whether any RTS strategy (Ekstazi/STARTS)
or search algorithm (LS/GP) is more effective than their counterparts in the same setting.

4.3 RQ3—Efficiency

What is the Efficiency Gain When Using RTS with GI?—By answering this question, we intend to
quantify the speed-up gained from using the RTS techniques when executing two different GI
algorithms, namely LS and GP. As opposed to RQ2, this RQ focuses on the speed-up of the GI
process itself rather than that of the software variants obtained by the GI algorithm.

Although running fewer tests during the search process will intuitively provide some speed up,
we want to analyse whether the cost of the additional profiling steps (i.e., collecting the dependencies
between source files and test cases and performing test case selection for each identified hot method)
incurred by the RTS tools make their usage infeasible and, if not, what is the resulting speed up
when taking this added cost into account. In the context of our approach to non-functional GI
with RTS (outlined in Section 3), we refer to the cost of these additional profiling steps as the
overhead of using the RTS techniques. These steps become increasingly complex as program and
test suite size increases, and the overhead may not be trivial when the program under improvement
is accompanied by many test cases and source files.

To evaluate the cost of the GI process with RTS, we used the “Relative Cost” (RC) metric,
which is defined as follows:

LRC(s,p) = cost(s(p)) + profiling(s(p))

average_original_cost(p) ~

(6)

where cost(s(p)) is the total execution time of the GI algorithm when using a given RTS strategy
s to improve program p; profiling(s(p)) is the cost of the profiling phase using strategy s when
applied to p; and average_original_cost(p) is the averaged cost across all runs when applying the
same GI algorithm without RTS on p. As RIC (Section 4.2) is represented in relation to GI without
RTS, a similar normalisation is applied for RC. In summary, RC measures the cost (execution time)
of the GI algorithm using a given RTS strategy s relative to the same algorithm without RTS. Thus,
the lower the RC, the greater the benefit RTS provides to the GI process execution time.

If the RC value is greater than 1.0, then the RTS technique does not speed up the process; rather,
it introduces more costs during the profiling phase than time saved during optimisation, making
it infeasible to use in practice. However, if the result of RC is lower than 1.0, then it is possible
to quantify the speed-up obtained by the strategy. For example, an RC of 0.5 means that the GI
process is twice as fast with RTS.

Similarly to RQs 1 and 2, we perform additional comparisons in order to answer sub-RQs 3.1
(how is GI efficiency affected by different RTS techniques?) and 3.2 (how do different GI algorithms
benefit from RTS in terms of efficiency?). These are required since we expect different RTS strategies
to yield different efficiency. Moreover, the differences between GP and LS may also extend to the
efficiency gained from each RTS technique, as each algorithm may take advantage of the efficiency
gains provided by the RTS techniques in different ways.

4.4 RQ4—Tradeoff

What is the Tradeoff between Safety, Efficiency and Effectiveness of the GI Process with Various RTS
Strategies in Different Application Scenarios?

Finally, RQ4 aims to answer whether different algorithms and RTS techniques weigh differently on
specific scenarios. This RQ sets the ground for a more practical view of the problem. In summary, we

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

196:12 G. Guizzo et al.

want to analyse the results and provide guidelines to the engineer on how to choose GI algorithms
and RTS techniques better when faced with different priorities. Because no specific algorithm can
be the best for all scenarios and must compromise on its tradeoffs [42], unveiling the magnitude of
such tradeoffs is crucial.

We created three tradeoff scenarios that comprise three different priorities an engineer may
have when performing GI: (i) Perfect Improvement (Pimprov); (i) Fast Improvement (Fipmprov) and (iii)
Diverse Improvement (Dimprov)-

This first scenario concerns the Perfect Improvement, where the engineer deals with the best
improved and valid (passes all test cases) program variant. In other words, this scenario is dedicated
to revealing which technique can obtain the best software runtime improvement overall, regardless
of how long it takes to execute GI. To find out which technique obtains the perfect improvement,
we compare their results in terms of raw runtime improvement.

The second scenario, Fast Improvement, is when the engineer is concerned with finding a valid
and improved program variant as fast as possible in the search process. Here, the engineer will focus
on finding any improved and valid program variant and then stop the GI execution immediately
to avoid wasting resources. In this case, the level of improvement is not important as long as the
overall runtime decreases. In order to find out which technique can find improvements the fastest,
we analyse at which time the first improved variant was found in the search process.

The third and final improvement scenario is Diverse Improvement, where the engineer wants
a wide gamma of program variants to choose from. Having a diverse set of improved programs
means the engineer can balance their priorities, inspect the improved code, and make a more critical
choice based on a qualitative analysis. For example, a wide set of programs may allow the engineer
to choose an improved program with fewer edits or even compare the code of multiple variants to
understand how their software’s runtime is positively affected. In order to find the most diverse
technique, we compute the number of improved variants found during the GI process by each
technique.

5 Experimental Design

This section describes how we conducted our experiments to validate and analyse the proposed
technique. For all experiments, we used the Gin tool [4] (see Section 3 for more information on
Gin’s functionality). A prior study comparing 31 GI tools for non-functional improvement found
Gin and PyGGI the most accessible tools to apply to new software [48]. Gin was found to be easily
configurable and natively supports LS and GP algorithms for GI. Combined with the fact that
Gin is scalable to larger projects and that we used it in our previous study [16], this made Gin a
straightforward choice for use in these experiments. To allow for reproducibility, we provide a
replication package at https://figshare.com/s/52a5092425c64648467e¢.

5.1 Gl Algorithms

To answer our RQs, we use two common GI algorithms [33] already implemented in Gin. As
mentioned in Section 3.2, we use GP [20] and LS [4, 13, 19]. The former is the most common
algorithm in GI, consisting of a global search, focusing on both exploration and exploitation of
the search space, and is generally more expensive computationally. The latter focuses on an LS of
neighbouring software variants with fewer modifications, which is less expensive but can more
often result in local optima. LS was chosen for these experiments as it is readily available in Gin
and has shown promising results in prior research [2], demonstrating comparable, if not better,
performance than GP across various improvement scenarios. Since these algorithms perform the
search differently, analysing their results can unveil further insights for GI and RTS. They are each
set to run for 10 generations with 40 individuals in the population. The mutation probability is

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

https://figshare.com/s/52a5092425c64648467e

Speeding Up Gl via Regression Test Selection 196:13

Table 1. Subject Programs

Program LLOC #I T.LLOC Cov Test Time
codec-1.14" 9,044 1,081 13,276 96/91 00:15
compress-1.20" 25,978 1,170 22,059 84/75 01:39
csv-1.7* 1,845 325 4,864 89/85 00:06
fileupload-1.4* 2,425 82 2,284 80/76 00:04
gson-2.8.5 8,123 1,050 14,137 83/79 00:05
imaging-1.0* 31,320 583 7,427 73/59 00:52
jcodec-0.2.3 98,126 386 10,556 46/34 00:19
jfreechart-1.5.0 94,203 2,174 39,883 54/46 00:08
joda-time-2.10.14 29,895 4,239 56,404 89/81 00:11
spatial4j-0.9 6,950 466 3,954 79/74 00:09
text-1.3" 8,703 898 12,872 97/96 00:05
validator-1.6* 7,409 536 8,352 86/76 00:11

LLOC: number of logical lines of code (executable lines); #T: number of test cases in
the program’s test suite; T. LLOC: number of logical lines of test code; Cov: statement
and branch coverage percentages obtained by the test suite; Test Time: execution
time of the test suite (mm:ss). The asterisks mark programs from the Apache suite.

set to 50% and the crossover probability to 100% (GP only). The values for these parameters were
selected to remain consistent with our previous investigation [16], and are in line with prior studies
using these algorithms [11, 24, 28, 33] Each patch/software variant is run internally 10 times to
account for runtime variations.

5.2 RTS Techniques

We consider two state-of-the-art RTS techniques, used both in research and in industry: Ekstazi [14]
(dynamic RTS) and STARTS [27] (static RTS). These are described in Section 2.1. We also include a
random test case selection as a sanity check. Namely, we compare the following strategies in our
empirical evaluation:

—GI—Either GP or LS with no RTS (baseline);

—GI+Random—GI using a random test selection that selects a subset of test cases from the
original test suite without guidance;

— GlI+Ekstazi—GI using Ekstazi (v5.3.0) as a dynamic analysis RTS technique;

—GI+STARTS—GI using STARTS (v1.3) as a static analysis RTS technique.

To answer questions about the efficiency of the RTS techniques, we compute the time taken for
each algorithm-RTS combination by summing the runtime needed for all GI steps, i.e., the time
needed to profile the programs, select test cases and perform the search. Since all strategies share a
common stopping criterion (number of generations), we can compute how much time is needed to
perform the same GI tasks.

5.3 Subject Programs

We compare the algorithms and techniques using 12 programs collected from related work [3, 16,
17, 28, 31]. Table 1 presents details about the subject programs. We selected these programs because
they represent a diverse set of domains, with different sizes, numbers of test cases, coverage values
and test times, which in turn enhances the generalisability of our evaluation. The test time is the
cost of running the program’s testing procedure using Maven.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

196:14 G. Guizzo et al.

Table 2. Percentage of Selected Test Cases From the Entire
Test Suite

Program GI+Ekstazi GI+STARTS GI+Random

codec 4.55 4.55 35.90
compress 4.52 16.92 67.94
csv 72.17 96.44 30.74
fileupload 39.51 41.98 53.70
gson 64.47 90.74 37.25
imaging 1.94 81.31 39.42
jeodec 2.55 0.46 47.11
jfreechart 13.83 39.62 41.62
joda-time 0.66 - 45.97
spatialdj 83.56 100.00 41.45
text 4.35 4.35 37.18
validator 15.89 29.53 45.42
Median 4.55 29.53 41.53

The lower the percentage, the greater the reduction in number of
test cases. Best values are highlighted in bold. A dash represents a
technical failure in selecting test cases.

5.4 Experimental Procedure

Each algorithm is run for 20 independent runs on each program to account for the stochastic search
process. At the end of each independent run, the algorithm outputs a list of all program variants
generated during the search. The valid program variant with the best improvement score is selected
for validation against the entire test suite. The result of this validation is then used to compute the
efficiency gain (RC—speed-up of the GI process), effectiveness (RIC—improvement achieved by the
variant compared to the average improvement from GI without RTS) and safety (RS—how many
test cases from the entire test suite fail on the variant).

The results of the independent runs are compared using the Kruskal-Wallis statistical test [21]
and Vargha-Delaney A, effect size [39]. The former is used to assess if the difference between the
techniques is statistically significant across many independent runs, whereas the latter measures
the magnitude of the difference. Both tests are non-parametric, meaning they do not assume a
normal distribution of the data.

6 Results

This section presents the results of our experiments and answers the RQs described in the previous
section. Table 2 presents the number of test cases selected by each strategy for each program. This
selection was performed in the profiling phase (as explained in Section 3), and the time taken to
complete this task is computed as overhead.

6.1 Answer to RQ1—Safety

As mentioned in Section 5.2, the GI+Random technique is used as a baseline in this experiment.
If a random selection of test cases is as safe as others, it means that Ekstazi and STARTS cannot
outperform a much simpler strategy such as random, and their results can be attributed to chance.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

Speeding Up Gl via Regression Test Selection 196:15

Our results show that GI+Random failed to provide a safe selection of test cases for 43 out of 480
independent runs (8.9%), i.e., the test cases selected by GI+Random cannot accurately detect bugs
in the improved versions of the software as well as the entire test suite in 8.9% of the cases. Using
the RS measure, however, we observed that the RS (Equation (3)) of GI+Random is always higher
than 0.991, i.e., at most 0.9% of the test cases fail when using a random RTS technique. This is due
to the fact that most test cases do not actually reach the statements modified by the GI algorithm,
thus passing the validation step.

GI+STARTS executed mostly successfully without test cases failing, except for two cases:
GI+STARTS with GP for commons-text and GI+STARTS for joda-time (for both GP and LS). In the
first case, one of the 20 GP independent runs for that SUT generated an improved version that
failed with the entire test suite. However, only one out of 898 test cases failed in this scenario,
yielding an RS result of 0.999, i.e., 99.9% of the test cases passed. On the other hand, for joda-time,
STARTS failed to select test cases altogether (as seen in Table 2). Since STARTS works with static
analysis and only captures test case relations with classes in compilation time, it could not analyse
joda-time’s dynamically loaded test suite, thus failing the 40 runs for that SUT (20 GP plus 20 LS
runs). All in all, from all 480 independent runs of GI+STARTS, 41 runs (8.5%) yielded an improved
version for which STARTS’ selection was unsafe or could not work. Disregarding its limitations
with joda-time, this number drops to 1 out of 440 runs, or 0.0023%.

Ekstazi, however, was able to perform the test selection for joda-time because it instruments all
test cases and class files of the projects, capturing execution information as they run. As a result
of Ekstazi’s dynamic analysis, all improved versions of all SUTs generated by GI+Ekstazi passed
when tested against the entire suite. Hence, GI+Ekstazi obtained a mean RS of precisely one, i.e.,
100% of the test cases passed in all scenarios.

Answer to RQ1.1—RTS Comparison. Randomly selecting test cases is not as safe as using RTS
techniques, failing to provide a safe selection in 8.9% of cases. State-of-the-art RTS strategies are
mostly feasible when used with GI, yielding almost 100% safety. GI+Ekstazi stood out by not
neglecting a single important test case in all 480 independent runs, thus obtaining a perfect RS
score. Due to the above reasons, GI+STARTS could not be applied to joda-time. Of the remaining
program runs, GI+STARTS failed to select one fault-revealing test case, failing only 1 of the 440
runs (0.0023%).

Answer to RQ1.2—Algorithm Comparison. Unsafe results appeared in 44 runs for GP and 40 runs
for LS. If we exclude the inability of STARTS to select test cases for joda-time, the numbers are 24
and 20, respectively. Of these 24 and 20 unsafe results, all but one appeared during GI+Random
runs (and can thus be attributed to this inherently unsafe RTS technique). The only unsafe result
using state-of-the-art RTS techniques appeared in a GI+STARTS run with GP.

Answer to RQ1. We can safely state that Ekstazi always selects all the relevant test cases for
GI, whereas STARTS fails in some edge cases due to its static analysis limitations. We have not
observed any significant difference in safety between different GI algorithms. State-of-the-art RTS
techniques are safe to use with GI for both GP and LS.

6.2 Answer to RQ2—Effectiveness

One concern with the impact of RTS on the general GI effectiveness is that the use of RTS might
affect how much improvement can be achieved by the GI algorithms. Therefore, it is important to
analyse the results in terms of the RIC—Equation (4) metric we devised in Section 4.2. Tables 3 and
4 present, respectively, the median RIC results and the effect size of the 20 independent runs of our
experiments.

From Table 3, we can observe that, for 16 out of 24 (66.6%) cases, using GI without RTS is
favourable, i.e., GI without RTS obtains the most effective results or equivalent results to the most

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

196:16 G. Guizzo et al.

Table 3. RQ2: Median Relative Improvement Change (RIC-Equation (4)) Compared to Gl
without RTS Over 20 Independent Runs

Algorithm Program GI GI+Ekstazi GI+STARTS GI+Random p-value
GP codec 1.00 3.36 2.29 095 <0.001
compress 1.00 2.53 5.81 3.96 < 0.001
csv 1.00 2.89 3.80 1.68 0.001
fileupload | 1.00 2.55 1.97 2.08 0.065
gson 1.00 0.70 0.68 0.86 0.515
imaging 1.00 0.64 0.95 0.46 0.552
jcodec 1.00 1.81 1.18 1.38 0.684
jfreechart = 1.00 0.44 0.51 0.22 <0.001
joda-time 1.00 6.74 - 7.50 < 0.001
spatial4j 1.00 0.93 1.17 1.23 0.478
text 1.00 2.40 0.95 0.57 0.003
validator 1.00 4.92 2.81 4.04 < 0.001
Median 1.00 2.46 1.18 1.30 -
LS codec 1.00 10.27 7.22 1.08 0.001
compress | 1.00 0.16 0.14 0.15 < 0.001
csv 1.00 0.54 0.59 0.60 0.016
fileupload = 1.00 0.19 0.20 0.17 < 0.001
gson 1.00 1.42 0.82 2.51 0.056
imaging | 1.00 1.08 1.11 1.61 0476
jcodec 1.00 0.84 0.89 0.88 0.926
jfreechart 1.00 1.84 1.74 0.25 0.001
joda-time 1.00 2.96 - 3.19 < 0.001
spatial4j 1.00 0.97 1.25 2.63 < 0.001
text 1.00 0.58 0.41 0.34 0.002
validator 1.00 0.96 0.81 0.70 0.799
Median 1.00 0.96 0.82 0.79 -

Greater RIC values are better. The best RIC medians are highlighted in bold. Grey cells are statistically
equivalent to the best RIC. The last column shows the p-value result of Kruskal-Wallis. Significant p-values
(< 0.05) are highlighted in bold.

effective approach. In fact, all approaches obtained favourable results for 16 to 19 cases, meaning
the results are somewhat mixed, showing no strong evidence in favour of a single approach and
evidence for similarities between them more often.

Table 4 shows that the difference in effectiveness between GI and GI+Ekstazi/STARTS is not
straightforward. We observe that 25 out of 46 (54.4%) pairwise effect size comparisons between GI
and GI+Ekstazi/STARTS show medium to negligible effect sizes. Thus, in approximately half of the
cases, using state-of-the-art RTS techniques does not affect the capability of the GI algorithms to
improve the software runtime. For 14 out of 46 (30.4%) comparisons, using RTS with GI generates
largely better software (bold values lower than 0.5), and only for 7 (15.2%), the results are largely
worse with RTS (bold values greater than 0.5). However, if we analyse the results by algorithm (i.e.,
GP and LS), there is a clear indication that RTS has a beneficial impact on the results of GP (as
observed in our previous work [16]) more often than when using LS. The first observation supporting

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

Speeding Up Gl via Regression Test Selection 196:17

Table 4. RQ2: Results of the Pairwise (Group A/Group B) Vargha-Delaney A, (VDA) Effect
Size Test for the Relative Improvement Change (RIC-Equation (4))

Algorithm Program GI/GI+Ekstazi GI/GI+STARTS GI+Ekstazi/GI+STARTS

GP codec 0.04 (L) 0.14 (L) 0.56 (N)
compress 0.13 (L) 0.00 (L) 0.30 (M)
csv 0.16 (L) 0.20 (L) 0.49 (N)
fileupload 0.26 (L) 0.40 (S) 0.63 (S)
gson 0.56 (N) 0.59 (S) 0.55 (N)
imaging 0.58 (S) 0.48 (N) 0.48 (N)
jcodec 0.42 (S) 0.44 (N) 0.57 (N)
jfreechart 0.78 (L) 0.72 (M) 0.40 (S)
joda-time 0.00 (L) - -
spatial4j 0.46 (N) 0.41 (S) 0.43 (N)
text 0.29 (M) 0.56 (N) 0.73 (M)
validator 0.11 (L) 0.22 (L) 0.66 (S)

LS codec 0.26 (L) 0.21 (L) 0.43 (N)
compress 0.94 (L) 0.97 (L) 0.58 (S)
csv 0.74 (L) 0.73 (M) 0.45 (N)
fileupload 0.89 (L) 0.85 (L) 0.50 (N)
gson 0.38 (S) 0.58 (S) 0.68 (M)
imaging 0.39 (S) 0.40 (S) 0.48 (N)
jcodec 0.45 (N) 0.46 (N) 0.48 (N)
jfreechart 0.20 (L) 0.35 (S) 0.56 (N)
joda-time 0.17 (L) - -
spatial4j 0.48 (N) 0.36 (S) 0.38 (S)
text 0.71 (M) 0.76 (L) 0.63 ()
validator 0.54 (N) 0.57 (N) 0.51 (N)

VDA values greater than 0.5 are better for Group A, and better for Group B when lower than 0.5. Difference
magnitudes are abbreviated as: N = negligible, S = small, M = medium, and L = large. Large effect sizes are
highlighted in bold.

this notion is that the GP+RTS area of Table 3 is greyer than the LS+RTS area, highlighting more
often the achievement of the best results or results equivalent to the best. Secondly, the effect size
differences show large magnitudes in favour of GP+RTS more often than GP without RTS. For 10
out of 23 (43.5%) comparisons, GP+RTS yielded largely better results than GP without RTS, whereas
GP without RTS yielded largely better results for only one out of 23 (4.3%) comparisons. These
results are not as favourable when considering the LS results. Favourable effect sizes for LS+RTS
only occur in 4 out of 23 (17.4%) cases, while unfavourable ones occur in 6 out of 23 (26.1%) cases.

As a side note, of the 122,700 valid variants obtained across all combinations of GI algorithms
and RTS techniques in our experiments, 88,794 contained swap edits, 76,923 contained delete edits,
68,957 contained copy edits and 58,063 contained replace edits. While this may initially seem
unintuitive, copy edits can positively impact variant runtime (e.g., by inserting return statements
or breaking out of loops earlier). Additionally, prior work has shown that copy edits combined
with other edit types can replicate the effect of different edit operations [30]. For instance, if a

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

196:18 G. Guizzo et al.

given statement is copied to a different location and one of the statements neighbouring the copied
statement is subsequently deleted, the outcome is the same as a single replace operation.

In conclusion, we observe that using RTS has no significant impact on GI effectiveness in most
cases. These results confirm our expectation since RTS does not change the overall mechanism of
the GI algorithms but rather the fitness evaluation process. In a minority of cases where a positive
impact is observed, we conjecture this might be because RTS narrows down the test cases used
during the improvement search to only the significant ones, thus reducing the number of executions
that can introduce noise to the improvement measurement and making the differences in execution
time more noticeable. In other words, by using only a subset of the test suite, the execution time
of the software under improvement is considerably lower. Thus, even a one-hundred-millisecond
improvement is deemed more significant by the GI algorithm. In such a case, the GI algorithm will
keep improving such variants. If the entire test suite were used, the same hundred milliseconds of
improvement would be “diluted” and deemed less valuable, increasing the odds of discarding the
improving variant during evolution.

Answer to RQ2.1—RTS Comparison. For all comparisons between GI+Ekstazi and GI+STARTS, the
results showed only negligible to medium effect size differences. Moreover, there is a significant
difference for only one of the 23 comparisons, and even this is still a medium effect size. Hence,
there is no strong evidence to suggest that STARTS and Ekstazi differ in their impacts on the
improvement effectiveness of GL

Answer to RQ2.2—Algorithm Comparison. When comparing the results obtained for each GI
algorithm (i.e., GP and LS), we observed a greater proportion of positive RIC when using RTS with
GP (43.5%) than RTS with LS (17.4%). In other words, when using RTS with GP, there is a greater
chance of obtaining better software improvements (relative to GP without RTS) than when using
LS. While the reasoning behind this finding is unclear, it indicates that the resources saved using
RTS are more productively reallocated towards generating better variants with GP.

Answer to RQ2. The use of RTS seems to be detrimental to the effectiveness of GI in only a small
proportion of cases (15.2%), offering no change in effectiveness for most of the cases (54.4%) and
even improvements in roughly a third of the cases (30.4%). It should also be noted that the impact
on effectiveness measured for each program does not correlate with any of the metrics presented
in Table 1, suggesting that engineers using RTS when applying GI to larger-scale programs should
expect to see similar performance. Our results showed that both RTS techniques have a similar
impact on the effectiveness values. On the other hand, the choice of the GI algorithm can yield
different effectiveness: GP benefits the most from RTS in terms of effectiveness.

6.3 Answer to RQ3—Efficiency

This section presents the results and answers for RQ3 regarding the efficiency of using GI with the
various RTS techniques. The results are presented in the form of RC—Equation (6) compared to
using no RTS. Tables 5 and 6 show, respectively, the median RC results and the effect size over the 20
independent runs. Figure 2 depicts the RC values as boxplots for a more fine-grained visualisation.

The first observation is that, in the vast majority of the cases, more specifically for 20 out of 24
(83.3%) group comparisons, using RTS yields statistically significant better results. These results
are expected since improving the efficiency of testing is the precise objective of using RTS. On
average, Ekstazi obtained the best efficiency when compared to STARTS, with median RC values
of 0.72 for GP and 0.58 for LS (i.e., it costs 28% and 42% less than using no RTS with these search
algorithms, respectively). In comparison, STARTS achieved RC values of 0.93 (7% reduction) with
GP and 0.96 (4% reduction) with LS. Considering the effect size pairwise comparison, for 14 out of
22 (63.6%) cases, there were no large differences between GI+Ekstazi and GI+STARTS. However,
for 7 out of 22 (31.8%) cases, GI+Ekstazi showed largely better efficiency than GI+STARTS, while

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

Speeding Up Gl via Regression Test Selection 196:19

Table 5. RQ3: Median Relative Cost (RC-Equation (6)) Compared to GI without RTS Over
20 Independent Runs

Algorithm Program GI GI+Ekstazi GI+STARTS GI+Random p-value

GP codec 1.00 0.39 0.40 0.77 < 0.001
compress 1.00 0.32 0.38 0.89 < 0.001
csv 1.00 1.03 0.93 0.82 0.008
fileupload | 1.00 1.11 0.93 1.05 0.028
gson 1.00 0.83 0.99 0.88 < 0.001
imaging 1.00 0.79 0.98 0.40 < 0.001
jeodec 1.00 0.22 1.03 1.30 < 0.001
jfreechart 1.00 0.34 0.30 0.40 < 0.001
joda-time 1.00 0.50 - 0.71 < 0.001
spatial4j 1.00 0.78 1.02 0.57 < 0.001
text 1.00 0.67 0.78 1.15 < 0.001
validator ~ 1.00 0.82 0.47 1.01 0.015
Median 1.00 0.72 0.93 0.85 -

LS codec 1.00 0.28 0.29 0.98 < 0.001
compress 1.00 0.24 0.27 1.06 < 0.001
csv 1.00 0.95 1.02 0.74 < 0.001
fileupload = 1.00 0.95 0.96 0.95 0.636
gson 1.00 0.87 1.06 0.70 < 0.001
imaging 1.00 0.87 0.96 0.22 < 0.001
jcodec 1.00 0.20 1.03 1.09 < 0.001
jfreechart 1.00 0.39 0.44 0.32 < 0.001
joda-time 1.00 0.45 - 1.29 <0.001
spatial4j 1.00 0.55 0.82 0.45 < 0.001
text 1.00 0.86 0.99 1.18 0.002
validator = 1.00 0.61 1.00 0.49 0.088
Median 1.00 0.58 0.96 0.84 -

Lower RC values are better. The best RC medians are highlighted in bold. Grey cells are statistically equivalent
to the best RC. The last column shows the p-value result of Kruskal-Wallis. Significant p-values (< 0.05) are
highlighted in bold.

GI+STARTS only showed large favourable efficiency compared to GI+Ekstazi in one out of 22
(4.5%) cases. This efficiency gap is likely due to the differences in each tool’s test case selection
methods (described in Section 2.1). STARTS is relatively conservative in its selection phase [38],
translating to a larger set of tests for a given variant and resulting in longer execution times, thus
yielding higher RC values. As seen in Table 2, Ekstazi is typically more precise in selecting only
those test cases that could make a given variant fail, meaning failing variants can be identified more
efficiently as fewer irrelevant test cases are executed. For one program (“spatial4j”), GI+Random
selected the fewest test cases. This behaviour is reasonable to expect in some cases as GI+Random
selects tests without considering safety. In this particular case, the targeted method in “spatial4j” is
one on which many other components of the software depend. Thus, the majority of the tests from
the test suite traversed this method and were deemed necessary by both RTS tools.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

196:20 G. Guizzo et al.

Table 6. RQ3: Results of the Pairwise (Group A/Group B) Vargha-Delaney Ay (VDA) Effect Size
Test for the Relative Cost (RC-Equation (6))

Algorithm Program GI/GI+Ekstazi GI/GI+STARTS GI+Ekstazi/GI+STARTS

GP codec 0.96 (L) 0.89 (L) 0.55 (N)
compress 0.99 (L) 0.98 (L) 0.30 (M)
csv 0.49 (N) 0.65 (S) 0.70 (M)
fileupload 0.36 (S) 0.63 (S) 0.74 (L)
gson 0.83 (L) 0.49 (N) 0.16 (L)
imaging 0.80 (L) 0.52 (N) 0.24 (L)
jcodec 1.00 (L) 0.49 (N) 0.00 (L)
jfreechart 1.00 (L) 0.97 (L) 0.64 (S)
joda-time 0.97 (L) - -
spatial4j 0.70 (M) 0.50 (N) 0.27 (M)
text 0.82 (L) 0.76 (L) 0.35 (S)
validator 0.63 (S) 0.74 (M) 0.64 (S)

LS codec 0.97 (L) 0.98 (L) 0.47 (N)
compress 1.00 (L) 1.00 (L) 0.19 (L)
csv 0.51 (N) 0.42 (S) 0.40 (S)
fileupload 0.60 (S) 0.61 (S) 0.50 (N)
gson 0.76 (L) 0.48 (N) 0.23 (L)
imaging 0.66 () 0.54 (N) 0.37 (S)
jcodec 1.00 (L) 0.57 (N) 0.00 (L)
jfreechart 1.00 (L) 1.00 (L) 0.27 (M)
joda-time 0.89 (L) - -
spatial4j 0.88 (L) 0.58 (S) 0.11 (L)
text 0.66 (S) 0.48 (N) 0.30 (M)
validator 0.72 (M) 0.64 (S) 0.43 (N)

VDA values lower than 0.5 are better for Group A, and better for Group B when greater than 0.5. Difference
magnitudes are abbreviated as: N = negligible, S = small, M = medium, and L = large. Large effect sizes are
highlighted in bold.

Similarly to our findings for effectiveness, the amount of improvement in terms of efficiency for
each program when using RTS with GI did not demonstrate a clear relationship with the program
metrics in Table 1. We observed efficiency gains in all programs, regardless of size. In general, we
believe the efficiency gains from applying RTS will depend on more in-depth factors related to
the quality of the test suite provided (e.g., whether many tests cover the same branches, how long
they run for and so on) and what proportion of the test suite covers the methods being targeted for
improvement. For instance, if there is significant overlap in the source code covered by many test
cases, an RTS tool will struggle to reduce the size of the test suite. This was the case for “spatial4j”
discussed above, meaning Ekstazi could only reduce the test suite size by 16.44%, while STARTS
could not reduce the test suite at all (Table 2).

Although the benefits of using RTS are prominent for the engineer (e.g., they can save up to
80% of execution time by using LS with Ekstazi for jcodec), the benefits are also significant for
researchers performing experiments involving GI. Figure 3 shows the cumulative cost in terms of
hours of execution time for our entire set of experiments over 20 independent runs.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

Speeding Up Gl via Regression Test Selection

196:21

codec

compress

fileupload

gson

imaging

##

i

L

Strategy

jcodec

jfreechart

joda-time

spatial4j

text

validator

B3 Gl+Ekstazi

Relative Cost (RC)

;

M{i

B3 GI+STARTS
E3 Gl+Random

GP

LS

GP LS

GP

LS
Algorithm

GP

LS

GP LS

GP

LS

Fig. 2. RQ3: RC of strategies. The y-axis shows the RC results, whereas the x-axis shows the two algorithms
used: GP and LS. Each boxplot represents the RC result of a given RTS strategy over 20 independent runs.
Lower values are better. The dashed line represents the median cost of Gl without RTS, i.e., baseline.

I GP Optimisation Time [l LS Optimi Time [Overhead
codec compress csv fileupload gson imaging
150
140
130
120
110 105.07 107.3
100
90
80 75.74
7071 65.06 70.18
—~ &0 60.38
= 5294 5332 490q
® 406
£ 2635 3061
= .. 1819 1852 s 1884 || 1220 PEATA
X 99 29 918
g - e s
o
1} jcodec jfreechart joda-time spatial4j text validator
[}
[
2
S
K]
>
£
=]
[&]
327 306 3058
27.03 26.41
N D N > N D
s° e & Q/_\% < S g Q/_\% < e & Q/_\e o
<& & o F &E X o F <& & o F
X @K ¥ @ K& NP
& & & & & &
Strategy

Fig. 3. RQ3: Cumulative execution times in hours for all runs. The y-axis shows the cumulative cost, whereas
the x-axis shows the different strategies used in our experiments. The results are divided into three phases: (i)
Overhead—cost of profiling (collecting dependencies between source files and test cases and performing test
case selection); (i) GP Optimisation Time—cost of the Gl optimisation using GP and (iii) LS Optimisation
Time—cost of the Gl optimisation using LS.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

196:22 G. Guizzo et al.

More often than not, GI+Ekstazi and GI+STARTS were much less expensive than using GI alone.
This can be seen with the total execution cost of our experiments: (i) GI—1,930 hours (~11.49
weeks); (i) GI+Ekstazi—915 hours (x5.45 weeks); (iii) GI+STARTS—1,233 hours (~7.34 weeks) and
(iv) GI+Random—1,515 hours (~9.02 weeks). Using GI+FEkstazi, we were able to save more than
1,000 hours of execution time, i.e., roughly six weeks of computational resources.

A case can be made that the high cost of GI could easily be solved by spawning more parallel
jobs. However, this approach still would not solve the problem of excessive computational resource
consumption. As software becomes more expensive, we believe the concern of sustainability should
lie in the hands of the engineers who developed it. To delegate such responsibility to other disciplines
(e.g., distributed computing) is to deny accountability for unsustainable engineering. Such practice
can be detrimental to the important goal of achieving greener SE.

Gin uses a “fail fast” strategy, meaning it stops the evaluation of a given software variant at
the signal of the first failing test case. Consequently, failing variants are cheaper to evaluate than
variants for which no test case fails. With this in mind, an RTS technique could incur a higher cost
than using no RTS by failing to select relevant test cases. In this situation, even though fewer test
cases are considered for execution by GI with RTS than GI without RTS, the algorithm has no signal
to stop executing the evaluation on faulty variants since relevant test cases that would fail are not
executed. Hence, the execution might go on longer than expected, causing the cost to increase. As
seen in Section 6.1, state-of-the-art RTS techniques are safe to use and hardly discard relevant test
cases, contrary to Random RTS, which fails more often. Thus, we observed the aforementioned
phenomenon in our experiments with GI+Random on programs for which it failed to select relevant
test cases. Although its median RC values for each algorithm both fell below one (i.e., cheaper
than no RTS), GI+Random was statistically more expensive than using no RTS at all for specific
programs such as “jcodec,” “joda-time” and “text”

When comparing both algorithms by their RC medians in Table 5, we can see that LS (0.58)
showed better reductions than GP (0.72) when using Ekstazi, but the difference is not entirely
visible for the other cases. Figure 4 presents the RC results, similarly to Figure 2, but with boxes
grouped by algorithm. Since Random RTS is only used as a sanity check and we already compared
it in the previous analysis, we omitted it from this figure. For “codec” and “compress,” it is clear
that LS obtains better efficiency gains with both RTS strategies than GP. On the other hand, GP is
more efficient for “jfreechart” and “text.” The results are mixed in all other cases.

In contrast to the results of RQ2 that showed that different algorithms impact the effectiveness
gains more than the RTS techniques, our efficiency results suggest that efficiency gains stem
from RTS techniques rather than the algorithms being used. This is somewhat expected since GI
algorithms are commonly designed to achieve better effectiveness and RTS techniques to achieve
better efficiency; thus, they differ mainly on those properties.

Answer to RQ3.1—RTS Comparison. GI+Ekstazi showed more efficiency gains when compared to
GI+STARTS. Ekstazi yielded a median execution time reduction of 28% with GP and 42% with LS,
while STARTS yielded 7% with GP and 4% with LS. When summing the total execution costs of our
experiments, GI+Ekstazi took 915 hours, whereas STARTS took 1,233.

Answer to RQ3.2—Algorithm Comparison. In general, both algorithms obtain similar efficiency
gains. In a few specific cases (e.g., “codec” and “compress” for LS, and “jfreechart” and “text” for
GP), one algorithm showed slightly better RC than the other, but for most cases the difference is
not statistically significant.

Answer to RQ3. Using RTS techniques can reduce the cost of the entire GI process by up to 80%.
For the vast majority of cases (83.3%), by using Ekstazi we were able to significantly improve the
efficiency of GI, reducing on average the cost of executing it by 28% in our experiments with GP
and 42% with LS. Ekstazi was also more efficient than STARTS, obtaining largely better efficiency

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

Speeding Up Gl via Regression Test Selection 196:23

codec compress csv fileupload gson imaging

L M e gk

o E::I— $ﬁ $-o- $-;-

0.0 Algorithm
o o
o jcodec jfreechart joda-time spatial4j text validator B GP
26 B4 LS
2.4
22 .
2.0 H
N H
1.8 : . :
1.6 . : s
1.4 :
.
1.2 <
1.07-----=---- B e | i R R | TR B = ---4- -
05 é =
06 *
04f == == %
==
02f s T
0.0
Ekstazi ~ STARTS Ekstazi ~ STARTS Ekstazi STARTS Ekstazi STARTS Ekstazi STARTS Ekstazi ~ STARTS
Strategy

Fig. 4. RQ3.2: RC of algorithms. The y-axis shows the RC results, whereas the x-axis shows the two main
RTS strategies used: Ekstazi and STARTS. Each boxplot represents the RC result of a given algorithm over 20
independent runs. Lower values are better. The dashed line represents the median cost of either GP or LS
without RTS, i.e., baseline.

than STARTS in 31.8% of cases. When looking at the total cost of our experimental procedure,
we observed a difference in total execution time of 6 weeks (or 1,000 hours) between the cost
of GI and GI+Ekstazi, further showcasing how much RTS is essential for more sustainable GI.
Similarly to our findings for effectiveness, we observed efficiency gains when using RTS with GI
for all programs regardless of their sizes, meaning RTS is likely to reduce GI execution time when
applied to programs at any scale. Overall, the GI algorithms do not seem to prefer a specific RTS
technique. Our results show that the efficiency gains stem from the RTS strategies rather than the
GI algorithms.

6.4 Answer to RQ4—Tradeoff

This section discusses the performance of the various combinations of GI algorithms and RTS
techniques when applied to multiple scenarios, aiming to gain a more practical perspective of the
tradeoffs each combination offers. Since our findings from Section 6.1 indicate that it is unsafe to
use in practice, we have avoided considering GI+Random when answering this question so as not
to mislead the reader: we do not recommend engineers use GI+Random in any of the following
scenarios.

The first tradeoff scenario we consider is Pipprov, which concerns finding the best possible program
variant. Table 7 presents the median improvement in seconds of the best program variant found
during 20 independent runs, i.e., by how much the execution time of the test suite is reduced by a
program variant.

Similarly to our previous results [16], GI+Ekstazi showed the best improvement overall. However,
because our previous work only considered GP as a GI algorithm and fewer programs, we observe
a few other interesting results in this work.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

196:24 G. Guizzo et al.

Table 7. RQ4: Pimprov Scenario

Algorithm Program Gl GI+Ekstazi GI+STARTS
GP codec 1.29 4.35 2.96
compress 2.46 6.23 14.28
csv 0.78 2.25 2.95
fileupload 0.05 0.13 0.10
gson 0.29 0.20 0.20
imaging 11.98 7.63 11.42
jcodec 6.77 12.26 7.95
jfreechart 2.06 0.90 1.05
joda-time 0.51 3.46 -
spatial4j 2.32 2.16 2.72
text 1.46 3.52 1.40
validator 0.29 1.44 0.82
Median 1.38 2.86 2.72
LS codec 0.34 3.49 245
compress 19.82 3.16 2.87
csv 0.75 0.41 0.44
fileupload 0.40 0.07 0.08
gson 0.37 0.52 0.30
imaging 2.48 2.67 2.74
jcodec 8.38 7.08 7.46
jfreechart 0.79 1.45 1.38
joda-time 0.57 1.69 -
spatial4j 2.49 2.41 3.12
text 0.78 0.45 0.32
validator 0.52 0.50 0.42
Median 0.76 1.57 1.38

Median improvement in total seconds of improvement of the best variant
found. Greater values are better. Best values are highlighted in bold.

First, the improvement obtained is smaller on average when using LS with RTS but better than
when using no RTS at all. Looking at the baseline results (GI without RTS), we found that LS
performs better for 7 out of 12 programs, and GP performs better for 5 out of 12 programs. On
the other hand, GI+Ekstazi performs better using GP rather than LS for 8 out of 12 cases, while
GI+STARTS performs better using GP for 8 out 11 cases. In other words, when using GP, the
engineer might obtain better results by also using RTS.

Second, GI+Ekstazi obtained the best program variants (on average) for 10 out of 24 cases, whereas
GI obtained the best variants for 9 out of 24 cases. Additionally, the overall median improvement
achieved by GI+Ekstazi is substantially greater than that of GI (more than double). Therefore,
coupled with the fact that GI+Ekstazi is the most efficient option, the tradeoff is clear: GI+Ekstazi
can find the best variant while spending less computational resources more often.

Table 8 presents the results for our second scenario, Fimpov, where the engineer is concerned
with finding an improving variant as fast as possible. The table shows the median execution time
in seconds until the algorithm found a positive and valid software variant.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

Speeding Up Gl via Regression Test Selection 196:25

Table 8. RQ4: Fimprov Scenario

Algorithm Program GI GI+Ekstazi GI+STARTS
GP codec 211.11 50.57 32.67
compress 244.34 32.27 36.30
csv 63.17 75.82 106.14
fileupload 64.07 53.36 71.59
gson 4.28 2.45 3.69
imaging 201.27 153.25 188.30
jcodec 310.69 59.57 257.39
jfreechart 27.48 8.88 9.13
joda-time 76.91 27.46 -
spatial4j 69.88 51.21 41.79
text 31.38 11.53 11.57
validator 27.04 4.82 14.41
Median 66.97 41.42 36.30
LS codec 168.26 31.00 31.11
compress 242.71 36.85 35.79
csv 67.40 62.53 84.55
fileupload 18.57 13.81 16.16
gson 4.56 3.12 3.80
imaging 146.78 134.66 162.40
jcodec 376.17 38.90 336.60
jfreechart 31.26 12.44 9.34
joda-time 33.77 8.91 -
spatial4j 56.06 60.29 49.05
text 33.60 2.77 6.71
validator 35.68 5.25 14.08
Median 45.87 22.41 31.11

Median execution time in seconds needed to find the first valid and improving
software variant. Lower values are better. Best values are highlighted in bold.

The first observation is somewhat aligned with the results of RQ2: Using RTS significantly speeds
up the search for program variants. Thus, the time needed to find the first improving and valid
variant is lower for GI+Ekstazi and GI+STARTS. Unlike our previous results [16], where we found
that STARTS found the fastest improvements, we observe that GI+Ekstazi finds the first improving
variant faster in most cases. This aligns with the findings from Section 6.3, which showed that
Ekstazi provides the best efficiency gains overall.

Table 9 presents the median number of valid and improving patches found by each algorithm.
These results concern our third scenario, Djpprov, Where the engineer focuses on finding the largest
set of improving and valid patches.

Different from our prior study [16], where GI+Ekstazi found the widest variety of program
variants, we found that not using RTS results in more diversity. These results are mainly due to
the inclusion of LS, where GI without RTS found more variants for 8 out of 12 cases. If we only
consider GP, then GI+Ekstazi was able to find more variants for 7 out of 12 cases.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

196:26 G. Guizzo et al.

Table 9. RQ4: Dimprov Scenario

Algorithm Program Gl GI+Ekstazi GI+STARTS
GP codec 6.0 16.0 9.0
compress 11.0 28.5 41.5
csv 25.0 48.0 24.0
fileupload 25 4.0 2.0
gson 48.5 40.5 25.5
imaging ~ 25.5 21.0 23.0
jcodec 235 35.0 23.5
jfreechart 121.5 35.5 73.0
joda-time 7.0 8.0 -
spatial4j 11.0 5.0 18.0
text 13.0 19.5 18.5
validator 36.0 44.0 7.0
Median 18.2 24.8 23.0
LS codec 27.0 9.5 12.5
compress 60.5 51.5 53.5
csv 38.0 34.5 32.0
fileupload 28.0 6.0 6.0
gson 73.5 61.5 53.0
imaging 16.0 28.0 30.5
jcodec 11.5 38.0 47.5
jfreechart 73.0 104.5 67.5
joda-time 23.0 15.0 -
spatial4j 27.0 5.0 20.0
text 20.0 22.0 24.0
validator 29.5 15.0 25.0
Median 27.5 25.0 30.5

Median number of distinct, positive, and valid patches. Greater values are
better. Best values are highlighted in bold.

Answer to RQ4. If the engineer is concerned with finding the best possible program variant using
GI, then the results are clear: GI+Ekstazi offers the best tradeoff. GI+Ekstazi is able to find the best
variants overall with excellent efficiency. This efficiency also makes GI+Ekstazi the best choice when
trying to find an improving variant as fast as possible. On the third tradeoff analysis concerning the
variety of program improvements, we found that LS provides a wider gamma of patches without
RTS, whereas GP yields more diversity with Ekstazi. Overall, it appears that GI+Ekstazi using GP
provides the most balanced tradeoff in most scenarios.

7 Threats to Validity

Threats to External Validity. As is common in SE experiments, it is possible that the set of subject
programs may not be representative of all software. To mitigate this threat, we have included
five new subjects from related work on top of the previous seven, thus forming a diverse set of
programs from many domains. As shown in Table 1, the programs used in our empirical evaluation

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

Speeding Up Gl via Regression Test Selection 196:27

are well-known, non-trivial, of different sizes, have test suites of various sizes and coverages, and
are used for different purposes.

Another external threat concerns the fact that we have used only two RTS techniques and two
GI algorithms in our experiments, and that Gin can only target one method at a time or multiple
methods from the same class (which it handles all in the same way, regardless of their type).
Additionally, other GI tools may benefit from the application of RTS approaches in different ways
(e.g., due to the various tool execution times and algorithm implementations). In this work, we
have included an additional GI algorithm (LS) precisely to improve the generalisability of our
results and to unveil the effect of the different state-of-the-art RTS techniques in this new scenario.
Although more algorithms, techniques and GI tools could have been used, the computational cost
of the experiments would have been prohibitive. Thus, we decided to experiment only with the
state-of-the-art [14, 27].

Threats to Internal Validity. We have taken a few measures when designing the experiments
to reduce internal threats concerning different environments affecting the results. First, we ran
all experiments on the same cluster of machines, giving them a common environment and thus
mitigating possible execution variations due to hardware differences. Second, we used the same
configuration for all experiments, including the optimisation-stopping condition. Finally, we pro-
vided all algorithms and strategies with the same test suite for each program, meaning a single
shared benchmark was used to measure execution times.

Since test cases can only reveal the presence of bugs in the software and not the software’s
correctness [10], our validation can only measure the adequacy of the program variants w.r.t. the
available test suites, not their correctness. Therefore, another internal threat concerns the validity
of our results if we considered correct patches rather than adequate patches during the validation
process. Unfortunately, analysing programs to guarantee correctness is still generally impossible
with automated tools and would require an infeasible amount of effort to do so manually. In order to
minimise this threat, we have used the original test suites provided with the programs as a baseline
for validity. The programs’ developers and other open-source collaborators carefully curated these
test suites and use them in the continuous integration process to validate pull requests. Despite this,
there is still a possibility that these tests are insufficient to test GI-generated patches adequately.
One possible solution to mitigate this threat would be to automatically generate new test cases to
improve the testing power of such test suites. However, this approach could introduce overfitting
in the results [28]. We tried to mitigate this threat in our experiments by including programs with a
range of values for test suite coverage. However, handling insufficient test suites remains an open
challenge in GI for non-functional properties [32].

Threats to Construct Validity. Given the stochastic nature of the GI algorithms used in this article,
we performed 20 independent runs to account for the randomness variation of results. Moreover,
we executed each test case 10 times to account for possible fluctuations in their execution time. We
also took extra care when selecting and executing the statistical significance and effect size tests to
only claim differences in the results when sufficient evidence is found. Moreover, we do not make
any statistical assumptions about the data, thus avoiding tests that could jeopardise the validity of
our analysis.

8 Related Work

This section describes papers related to the usage of RTS techniques for improving the GI process.
As far as we know, only Mehne et al. [29] have investigated RTS in the context of APR, but never for
non-functional GI. In their work, the authors define their own ad-hoc RTS technique and evaluate

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

196:28 G. Guizzo et al.

the results in terms of APR speed-up. The results show a speed-up of up to 1.8 times the original
cost of APR for C programs using GenProg [24].

Additional studies use various regression techniques other than RTS. Venugopal et al. [40]
proposed using test case prioritisation for APR to prioritise test cases that can make the validation
fail, thus failing faster when an invalid patch is generated. As shown by their results, the authors
were able to save up to 57.5% of execution time. Similarly, Qi et al. [34] proposed TrpAutoRepair,
a technique that can prioritise test cases for APR in an online fashion. The idea is to avoid the
offline training of the techniques and only use information generated during the test validation
phase. Fast et al. [12] used incremental random sampling of test cases for patch validation in APR.
In summary, their approach selects all failing test cases and a subset of passing test cases. If the
patch passes all selected test cases, another sampling is performed. The authors compared their
technique with a test suite minimisation based on GA [9]. The authors obtained savings of up to
81% in computational resources.

Although APR can be considered a type of functional GI (i.e., it improves functional properties),
it is only a subset of what GI can achieve. Only the work of Mehhne et al. [29] touches the surface
regarding the evaluation of the effect of RTS in the context of GI, but then again, it focuses on APR
alone. Analysing the effect of RTS in the context of non-functional GI is considerably different than
analysing its effect in the context of APR, since RTS impacts precisely what indicates (most of the
time) the GI's improvement capabilities: computational resources consumption. In other words,
reducing the cost of APR with RTS impacts only the approach’s cost, whereas reducing the cost of
non-functional GI with RTS impacts the approach’s quality as well.

Due to the lack of work investigating the phenomena that can arise from using RTS in a non-
functional GI context, we conducted a set of experiments to analyse such phenomena in previous
work [16]. Our work differs from the articles mentioned in this section because: (i) we focus on
non-functional GI (as opposed to APR); (ii) we use test case selection (as opposed to test suite
minimisation and prioritisation); (iii) we focus on the improvement of Java programs (as opposed
to C programs) and (iv) and we focus on quantifying the overall effect that RTS has in this context.
In our previous work [16], we evaluated the impact of two RTS techniques when using GP in seven
real-world Java programs. To the best of our knowledge, it was the first study of its kind.

In this article, we substantially extend our previous work by including a new GI algorithm, five
new and larger subject programs, new RQs, and we provide a more thorough description of our
approach. Overall, as seen in Section 6, this extension brought to light exciting results that unveiled
differences in how RTS behaves in different contexts.

9 Conclusion

Although GI has been successful in improving many software properties [32], the cost of this
approach might still be an issue for its widespread adoption. Test case execution for validating
improved variants remains the primary source for this high cost. In this article, we tackled this prob-
lem by proposing the usage of RTS techniques during the evolutionary process of non-functional
GI for improving execution time. We analysed the impact of state-of-the-art techniques from many
angles, including safety, effectiveness, efficiency and engineering tradeoffs. With that in mind, we
conducted a set of experiments with 12 real-world programs, two state-of-the-art RTS tools (Ekstazi
and STARTS) and two GI algorithms (GP and LS) to answer four RQs concerning RTS feasibility in
this context.

Our results show that RTS is not only safe, but can also save up to 80% of execution time
w.r.t. Gl algorithms without RTS. On average, RTS techniques were able to save 31% of runtime.
When analysing the total cost of our experiments, we discovered that using Ekstazi (dynamic RTS)
resulted in six weeks (approximately 1,000 hours) of execution time savings. Furthermore, RTS also

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

Speeding Up Gl via Regression Test Selection 196:29

showed little to no negative effect on the GI capabilities of improvement, i.e., most of the time, RTS
techniques do not impact the effectiveness of GI algorithms. On the contrary, RTS can potentially
improve the final results of non-functional GI. Finally, we showed that Ekstazi can help the GI
algorithms find better software variants, find an improving and valid variant faster than other
techniques, and provide the engineer with a wider variety of patches.

Given these results, we advise future GI research to use RTS during the evolutionary process.
STARTS and Ekstazi have both been implemented and made accessible to anyone using Gin,
available at https://github.com/gintool/gin. This type of traditional SE technique can help the entire
field advance towards a more sustainable practice without the need for more potent parallelisation
hardware. We believe that the results of our work serve as evidence that SE techniques can be used
to solve Al problems as well and that there are other SE for Al topics that can be explored in the
future.

In future work, we intend to evaluate the usage of other regression techniques, such as test case
prioritisation, test suite minimisation, and online test case selection. Other possibilities include
using the data collected during the GI execution to not only select fewer test cases but also include
newly generated ones in case of insufficient testing. However, other works [28, 44] have suggested
that overfitting is an open challenge in non-functional GI, thus requiring more research. We also
plan to investigate the effect of flakiness both in functional and non-functional GI.

References

[1] Gabin An, Aymeric Blot, Justyna Petke, and Shin Yoo. 2019. PyGGI 2.0: Language independent genetic improvement
framework. In Proceedings of the ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/SIGSOFT FSE ’19). Marlon Dumas, Dietmar Pfahl, Sven Apel, and
Alessandra Russo (Eds.), ACM, 1100-1104. DOI : https://doi.org/10.1145/3338906.3341184
Aymeric Blot and Justyna Petke. 2021. Empirical comparison of search heuristics for genetic improvement of software.
IEEE Transactions on Evolutionary Computation 25, 5 (2021), 1001-1011. DOI: https://doi.org/10.1109/TEVC.2021.
3070271
[3] Alexander E. I Brownlee, Justyna Petke, and Anna F. Rasburn. 2020. Injecting shortcuts for faster running java code. In
Proceedings of the IEEE Congress on Evolutionary Computation (CEC °20), 1-8. DOI : https://doi.org/10.1109/CEC48606.
2020.9185708
[4] Alexander E. I. Brownlee, Justyna Petke, Brad Alexander, Earl T. Barr, Markus Wagner, and David R. White. 2019. Gin:
Genetic improvement research made easy. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO ’19). ACM, New York, NY, 985-993. DOI: https://doi.org/10.1145/3321707.3321841
[5] Bobby R. Bruce, Justyna Petke, Mark Harman, and Earl T. Barr. 2019. Approximate oracles and synergy in software
energy search spaces. IEEE Transactions on Software Engineering 45, 11 (2019), 1150-1169. DOI: https://doi.org/10.
1109/TSE.2018.2827066
[6] Nathan Burles, Edward Bowles, Alexander E. I. Brownlee, Zoltan A. Kocsis, Jerry Swan, and Nadarajen Veerapen.
2015. Object-oriented genetic improvement for improved energy consumption in Google Guava. In Proceedings of the
7th International Symposium on Search-Based Software Engineering (SSBSE ’15). Marcio de Oliveira Barros and Yvan
Labiche (Eds.), Lecture Notes in Computer Science, Vol. 9275, Springer, 255-261. DOL: https://doi.org/10.1007/978-3-
319-22183-0_20
[7] Lingchao Chen and Lingming Zhang. 2018. Speeding up mutation testing via regression test selection: An extensive
study. In Proceedings of the 11th International Conference on Software Testing, Verification and Validation (ICST ’18).
IEEE, 58-69. DOI: https://doi.org/10.1109/ICST.2018.00016
[8] Fabio de Almeida Farzat, Marcio de Oliveira Barros, and Guilherme Horta Travassos. 2018. Challenges on applying
genetic improvement in JavaScript using a high-performance computer. Journal of Software Engineering Research and
Development 6 (2018), 12. DOI : https://doi.org/10.1186/s40411-018-0056-2
[9] K.Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Transactions on Evolutionary Computation 6, 2 (2002), 182-197. DOI: https://doi.org/10.1109/4235.996017
[10] Edsger W. Dijkstra. 1972. The Humble Programmer. Commun. ACM 15, 10 (oct 1972), 859-866. 0001-0782 https:
//doi.org/10.1145/355604.361591
[11] Zhen Yu Ding, Yiwei Lyu, Christopher Steven Timperley, and Claire Le Goues. 2019. Leveraging program invariants
to promote population diversity in search-based automatic program repair. In Proceedings of the 6th International

[2

—

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

https://github.com/gintool/gin
https://doi.org/10.1145/3338906.3341184
https://doi.org/10.1109/TEVC.2021.3070271%20
https://doi.org/10.1109/TEVC.2021.3070271%20
https://doi.org/10.1109/CEC48606.2020.9185708%20
https://doi.org/10.1109/CEC48606.2020.9185708%20
https://doi.org/10.1145/3321707.3321841%20
https://doi.org/10.1109/TSE.2018.2827066%20
https://doi.org/10.1109/TSE.2018.2827066%20
https://doi.org/10.1007/978-3-319-22183-0_20%20
https://doi.org/10.1007/978-3-319-22183-0_20%20
https://doi.org/10.1109/ICST.2018.00016%20
https://doi.org/10.1186/s40411-018-0056-2%20
https://doi.org/10.1109/4235.996017%20
https://doi.org/10.1145/355604.361591%20
https://doi.org/10.1145/355604.361591%20

196:30 G. Guizzo et al.

Workshop on Genetic Improvement (GI@ICSE °19). Justyna Petke, Shin Hwei Tan, William B. Langdon, and Westley
Weimer (Eds.), ACM, 2-9. DOI: https://doi.org/10.1109/G1.2019.00011

[12] Ethan Fast, Claire Le Goues, Stephanie Forrest, and Westley Weimer. 2010. Designing better fitness functions for
automated program repair. In Proceedings of the 12th Annual Genetic and Evolutionary Computation Conference (GECCO
’10), 965-972. DOI : https://doi.org/10.1145/1830483.1830654

[13] Michel Gendreau and Jean-Yves Potvin. 2019. Handbook of Metaheuristics (3rd. ed.). Springer, 604 pages.

[14] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical regression test selection with dynamic file
dependencies. In Proceedings of the 2015 International Symposium on Software Testing and Analysis (ISSTA ’15), 211-222.
DOI: https://doi.org/10.1145/2771783.2771784

[15] David E. Goldberg. 1989. Genetic Algorithms in Search, Optimization and Machine Learning (1st. ed.). Addison-Wesley
Longman Publishing Co., Inc.

[16] Giovani Guizzo, Justyna Petke, Federica Sarro, and Mark Harman. 2021. Enhancing genetic improvement of software
with regression test selection. In Proceedings of the IEEE/ACM 43rd International Conference on Software Engineering
(ICSE °21), 1323-1333. DOIL: https://doi.org/10.1109/ICSE43902.2021.00120

[17] Giovani Guizzo, Federica Sarro, Jens Krinke, and Silvia R. Vergilio. 2022. Sentinel: A hyper-heuristic for the generation
of mutant reduction strategies. IEEE Transactions on Software Engineering 48, 3 (2022), 803-818. DOI : https://doi.org/
10.1109/TSE.2020.3002496

[18] Mark Harman, Phil McMinn, Jerffeson Teixeira De Souza, and Shin Yoo. 2011. Search based software engineering:
Techniques, taxonomy, tutorial. In Empirical Software Engineering and Verification. B. Meyer and M. Nordio (Eds.),Lec-
ture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), Vol. 7007, 1-59. DOI: https://doi.org/10.1007/978-3-642-25231-0_1

[19] Holger H. Hoos and Thomas Stiitzle. 2004. Stochastic Local Search: Foundations and Applications. Elsevier.

[20] John R. Koza. 1992. Genetic Programming: On the Programming of Computers by Means of Natural Selection, Vol. 1.
MIT Press.

[21] William H. Kruskal and W. Allen Wallis. 1952. Use of ranks in one-criterion variance analysis. Journal of the American
statistical Association 47, 260 (1952), 583-621.

[22] David C.Kung, Jerry Gao, Pei Hsia, Jeremy Lin, and Yasufumi Toyoshima. 1995. Class firewall, test order, and regression
testing of object-oriented programs. JOOP 8, 2 (1995), 51-65.

[23] William B. Langdon and Mark Harman. 2015. Optimising existing software with GP. IEEE Transactions on Evolutionary
Computation 19, 1 (2015), 1-18. DOI: https://doi.org/10.1109/TEVC.2013.2281544

[24] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer. 2012. A systematic study of automated
program repair: Fixing 55 out of 105 bugs for $8 each. In Proceedings of the 34th International Conference on Software
Engineering (ICSE °12). IEEE, 3-13.

[25] Claire Le Goues, Neal Holtschulte, Edward K. Smith, Yuriy Brun, Premkumar Devanbu, Stephanie Forrest, and Westley
Weimer. 2015. The manybugs and introclass benchmarks for automated repair of C programs. IEEE Transactions on
Software Engineering 41, 12 (2015), 1236-1256. DOIL : https://doi.org/10.1109/TSE.2015.2454513

[26] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and Darko Marinov. 2016. An extensive
study of static regression test selection in modern software evolution. In Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE °16). ACM Press, 583-594. DOI: https://doi.org/
10.1145/2950290.2950361

[27] Owolabi Legunsen, August Shi, and Darko Marinov. 2017. STARTS: STAtic regression test selection. In Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE °17). IEEE, 949-954. DOI :
https://doi.org/10.1109/ASE.2017.8115710

[28] Mingyi Lim, Giovani Guizzo, and Justyna Petke. 2020. Impact of test suite coverage on overfitting in genetic im-
provement of software. In Proceedings of the Symposium on Search Based Software Engineering (SSBSE °20). Springer,
188-203.

[29] Ben Mehne, Hiroaki Yoshida, Mukul R. Prasad, Koushik Sen, Divya Gopinath, and Sarfraz Khurshid. 2018. Accelerating

search-based program repair. In Proceedings of the 11th International Conference on Software Testing, Verification and

Validation (ICST ’18). IEEE, 227-238. DOI: https://doi.org/10.1109/ICST.2018.00031

Justyna Petke, Brad Alexander, Earl T. Barr, Alexander E. L. Brownlee, Markus Wagner, and David R. White. 2023.

Program transformation landscapes for automated program modification using Gin. Empirical Software Engineering

28, 4 (2023), 104. 1573-7616 https://doi.org/10.1007/s10664-023-10344-5

Justyna Petke and Alexander E. I. Brownlee. 2019. Software improvement with gin: A case study. In Proceedings of the

Search-Based Software Engineering: 11th International Symposium (SSBSE °19). Springer-Verlag, Berlin, 183-189. DOI :

https://doi.org/10.1007/978-3-030-27455-9_14

J. Petke, S. O. Haraldsson, M. Harman, W. B. Langdon, D. R. White, and J. R. Woodward. 2018. Genetic improvement

of software: A comprehensive survey. IEEE Transactions on Evolutionary Computation 22, 3 (2018), 415-432. DOI:

https://doi.org/10.1109/TEVC.2017.2693219

(30

=

(31

—

(32

—

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

https://doi.org/10.1109/GI.2019.00011
https://doi.org/10.1145/1830483.1830654%20
https://doi.org/10.1145/2771783.2771784%20
https://doi.org/10.1109/ICSE43902.2021.00120%20
https://doi.org/10.1109/TSE.2020.3002496%20
https://doi.org/10.1109/TSE.2020.3002496%20
https://doi.org/10.1007/978-3-642-25231-0_1%20
https://doi.org/10.1109/TEVC.2013.2281544%20
https://doi.org/10.1109/TSE.2015.2454513%20
https://doi.org/10.1145/2950290.2950361%20
https://doi.org/10.1145/2950290.2950361%20
https://doi.org/10.1109/ASE.2017.8115710%20
https://doi.org/10.1109/ICST.2018.00031%20
https://doi.org/10.1007/s10664-023-10344-5%20
https://doi.org/10.1007/978-3-030-27455-9_14%20
https://doi.org/10.1109/TEVC.2017.2693219%20

Speeding Up Gl via Regression Test Selection 196:31

[33] Justyna Petke, Mark Harman, William B. Langdon, and Westley Weimer. 2017. Specialising software for different down-
stream applications using genetic improvement and code transplantation. IEEE Transactions on Software Engineering
44, 6 (2017), 574-594. DOI : https://doi.org/10.1109/TSE.2017.2702606

[34] Yuhua Qi, Xiaoguang Mao, and Yan Lei. 2013. Efficient automated program repair through fault-recorded testing
prioritization. In Proceedings of the IEEE International Conference on Software Maintenance (ICSM ’13). IEEE, 180-189.
DOI: https://doi.org/10.1109/ICSM.2013.29

[35] Eric M. Schulte, Jonathan DiLorenzo, Westley Weimer, and Stephanie Forrest. 2013. Automated repair of binary and
assembly programs for cooperating embedded devices. In Proceedings of the Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’13). Vivek Sarkar and Rastislav Bodik (Eds.), ACM, 317-328. DOI: https:
//doi.org/10.1145/2451116.2451151

[36] Eric M. Schulte, Jonathan Dorn, Stephen Harding, Stephanie Forrest, and Westley Weimer. 2014. Post-compiler
software optimization for reducing energy. In Proceedings of the Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’14). Rajeev Balasubramonian, Al Davis, and Sarita V. Adve (Eds.), ACM, 639-652. DOI :
https://doi.org/10.1145/2541940.2541980

[37] August Shi, Milica Hadzi-Tanovic, Lingming Zhang, Darko Marinov, and Owolabi Legunsen. 2019. Reflection-aware
static regression test selection. Proceedings of the ACM on Programming Languages 3, OOPSLA (Oct. 2019), Article 187,
29 pages. DOI: https://doi.org/10.1145/3360613

[38] MinK. Shin, Sudipto Ghosh, and Leo R. Vijayasarathy. 2022. An empirical comparison of four Java-based regression test
selection techniques. Journal of Systems and Software 186 (2022), 111174. DOIL: https://doi.org/10.1016/j.jss.2021.111174

[39] Andras Vargha and Harold D Delaney. 2000. A critique and improvement of the CL common language effect size
statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics 25, 2 (2000), 101-132.

[40] Yazhini Venugopal, Phung Quang-Ngoc, and Lee Eunseok. 2020. Modification point aware test prioritization and
sampling to improve patch validation in automatic program repair. Applied Sciences (Switzerland) 10, 5 (2020), 1-14.
DOI: https://doi.org/10.3390/app10051593

[41] David Williams, James Callan, Serkan Kirbas, Sergey Mechtaev, Justyna Petke, Thomas Prideaux-Ghee, and Federica
Sarro. 2024. User-centric deployment of automated program repair at Bloomberg. In Proceedings of the 46th International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP ’24). Association for Computing
Machinery, New York, NY, 81-91. DOI: https://doi.org/10.1145/3639477.3639756

[42] David H. Wolpert and William G. Macready. 1997. No free lunch theorems for optimization. IEEE Transactions on
Evolutionary Computation 1, 1 (1997), 67-82. DOI: https://doi.org/10.1109/4235.585893

[43] Fan Wu, Westley Weimer, Mark Harman, Yue Jia, and Jens Krinke. 2015. Deep parameter optimisation. In Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO ’15). Sara Silva and Anna Isabel Esparcia-Alcazar
(Eds.), ACM, 1375-1382. DOI: https://doi.org/10.1145/2739480.2754648

[44] Jooyong Yi, Shin Hwei Tan, Sergey Mechtaev, Marcel Bchme, and Abhik Roychoudhury. 2018. A correlation study
between automated program repair and test-suite metrics. Empirical Software Engineering 23, 5 (2018), 2948-2979.
DOI: https://doi.org/10.1007/s10664-017-9552-y

[45] S. Yoo and M. Harman. 2012. Regression testing minimization, selection and prioritization: A survey. Software Testing
Verification and Reliability 22, 2 (2012), 67-120. DOI : https://doi.org/10.1002/stv.430

[46] Yuan Yuan and Wolfgang Banzhaf. 2020. Toward better evolutionary program repair: An integrated approach. ACM
Transactions on Software Engineering and Methodology (TOSEM) 29, 1 (2020), 5:1-5:53. DOL: https://doi.org/10.1145/
3360004

[47] Chenguang Zhu, Owolabi Legunsen, August Shi, and Milos Gligoric. 2019. A framework for checking regression test
selection tools. In Proceedings of the 41st International Conference on Software Engineering (ICSE ’19), 430-441. DOI :
https://doi.org/10.1109/ICSE.2019.00056

[48] Shengjie Zuo, Aymeric Blot, and Justyna Petke. 2022. Evaluation of genetic improvement tools for improvement
of non-functional properties of software. In Proceedings of the Genetic and Evolutionary Computation Conference
Companion (GECCO °22). ACM, New York, NY, 1956-1965. DOI: https://doi.org/10.1145/3520304.3534004

Received 10 June 2023; revised 20 January 2024; accepted 14 March 2024

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 196. Publication date: November 2024.

https://doi.org/10.1109/TSE.2017.2702606%20
https://doi.org/10.1109/ICSM.2013.29%20
https://doi.org/10.1145/2451116.2451151%20
https://doi.org/10.1145/2451116.2451151%20
https://doi.org/10.1145/2541940.2541980%20
https://doi.org/10.1145/3360613%20
https://doi.org/10.1016/j.jss.2021.111174
https://doi.org/10.3390/app10051593%20
https://doi.org/10.1145/3639477.3639756
https://doi.org/10.1109/4235.585893%20
https://doi.org/10.1145/2739480.2754648%20
https://doi.org/10.1007/s10664-017-9552-y%20
https://doi.org/10.1002/stv.430%20
https://doi.org/10.1145/3360004%20
https://doi.org/10.1145/3360004%20
https://doi.org/10.1109/ICSE.2019.00056%20
https://doi.org/10.1145/3520304.3534004%20

	Abstract
	1 Introduction
	2 Background
	2.1 RTS
	2.2 GI and Efficiency

	3 Proposed GI with RTS Approach
	3.1 Profiling
	3.2 Optimisation
	3.3 Validation Phase

	4 RQs
	4.1 RQ1—Safety
	4.2 RQ2—Effectiveness
	4.3 RQ3—Efficiency
	4.4 RQ4—Tradeoff

	5 Experimental Design
	5.1 GI Algorithms
	5.2 RTS Techniques
	5.3 Subject Programs
	5.4 Experimental Procedure

	6 Results
	6.1 Answer to RQ1—Safety
	6.2 Answer to RQ2—Effectiveness
	6.3 Answer to RQ3—Efficiency
	6.4 Answer to RQ4—Tradeoff

	7 Threats to Validity
	8 Related Work
	9 Conclusion
	References

