

How-to: SE Research with LLMs

Dave Williams, 26th November 2025

About Me

2nd Year PhD Student @ UCL
Supervised by Prof. Federica Sarro

Research Interests:

- Human factors of AI Adoption
- (AI) Developer Productivity
- Code Review

Prior Work:

- User-Centric Deployment of APR
@ Bloomberg
- Empirical PCA Evaluation
- **Empirical and Sustainability
Factors in LLM-based SE
Research (in this talk!)**

In this talk...

Chapters

1. **The LLM4SE Benchmarking Landscape**
2. **Looking Closer at LLM Usage in ICSE**
3. **Looking Forward: Guidelines for Empirical Studies**

Chapter 0: Increasing Impact, Helpful and Harmful

How Hungry is AI? Benchmarking Energy, Water, and Carbon Footprint of LLM Inference

Nidhal Jegham^{1,2} Marwan Abdelatti^{1,3} Lassad Elmoubarki² Abdeltawab Hendawi^{1,*}

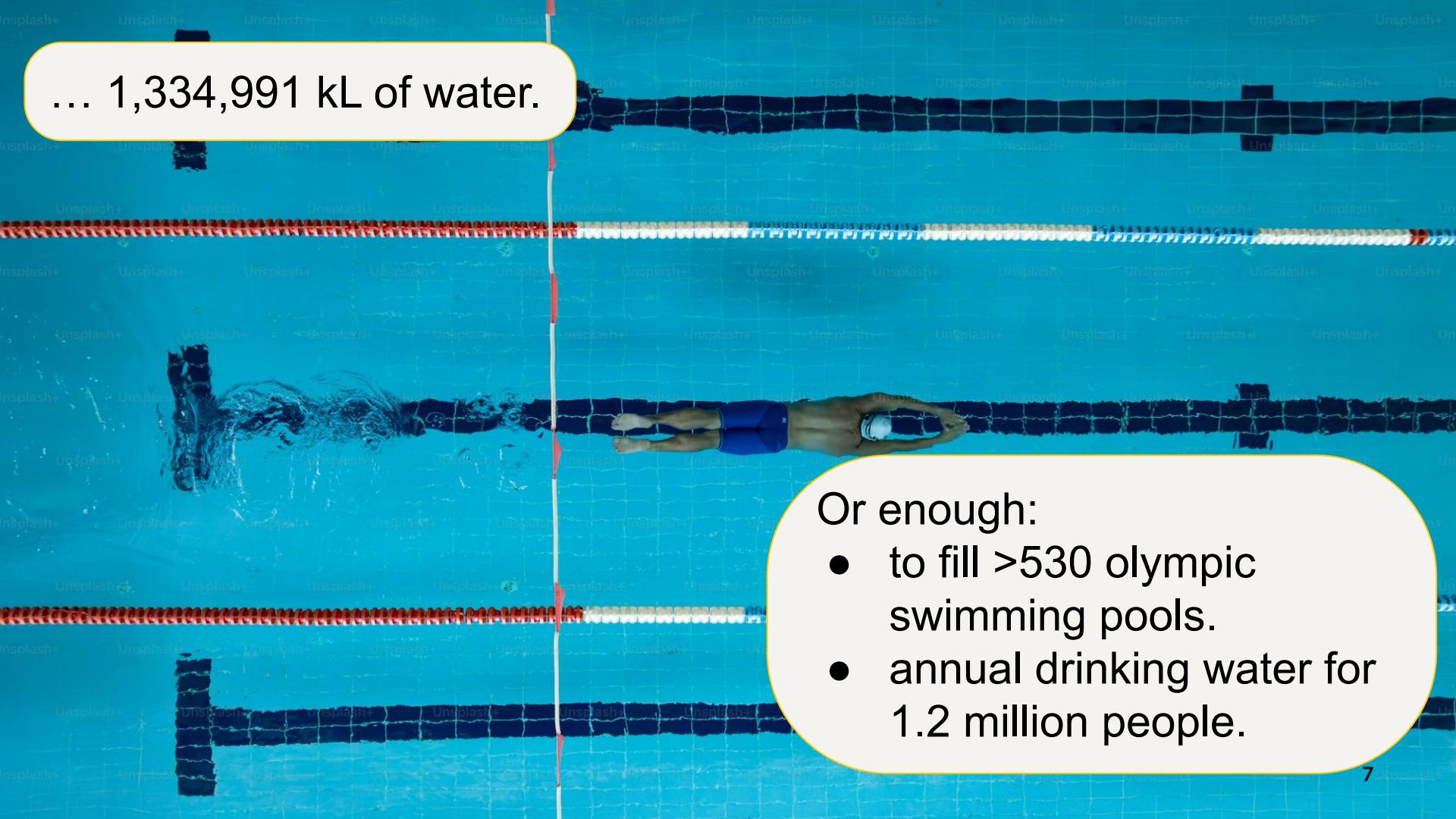
¹University of Rhode Island ²University of Tunis ³Providence College

{nidhal.jegham, hendawi}@uri.edu lassad.elmoubarki@tbs.rnu.tn mabdelat@providence.edu

In a case study estimating the environmental impact of GPT-4o, they found that in a year (or 772 billion queries), GPT-4o uses...

... 391,509 MWh of electricity.

Or enough to power
>145,000 UK homes.

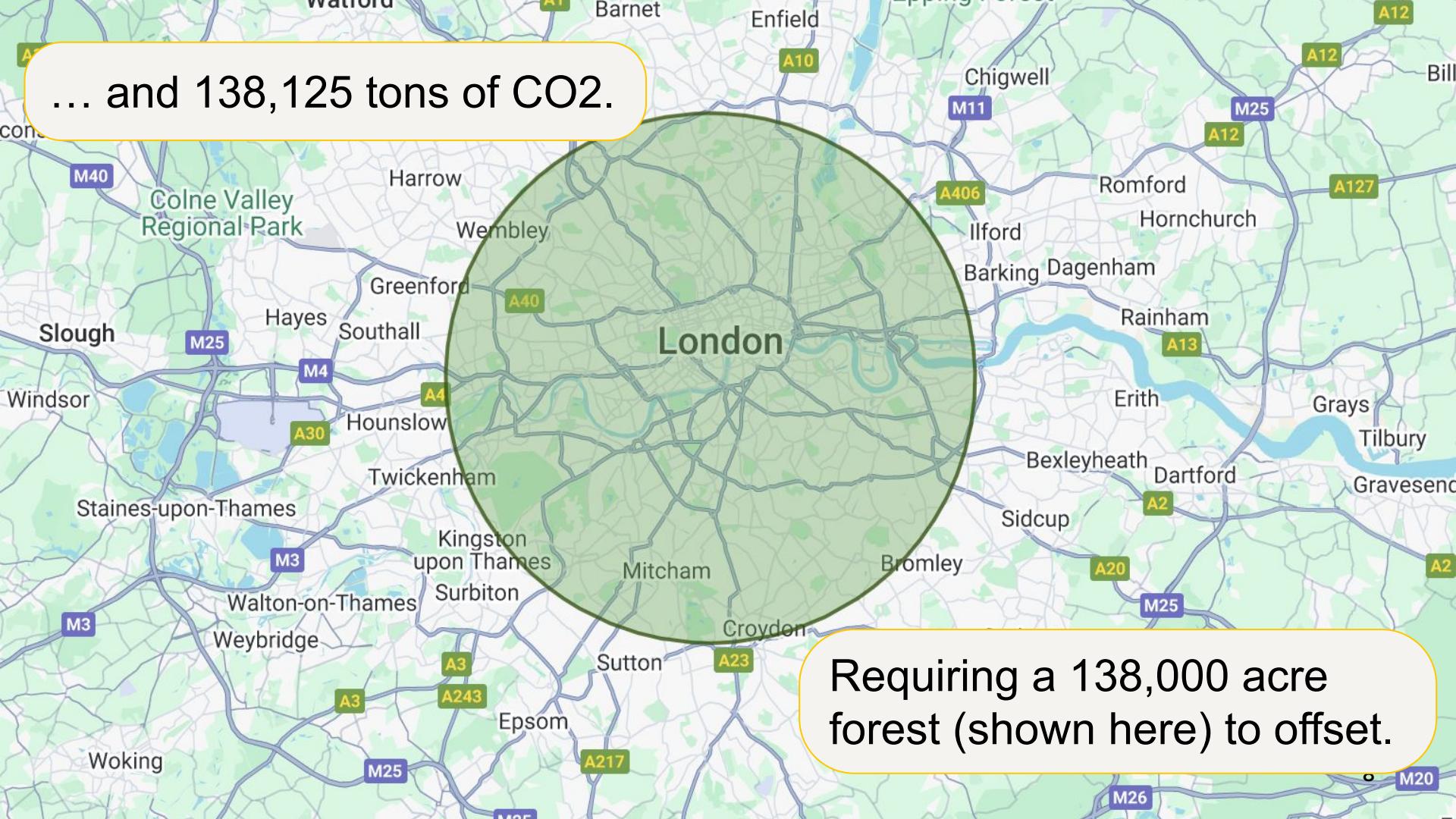


... 1,334,991 kL of water.

Or enough:

- to fill >530 olympic swimming pools.
- annual drinking water for 1.2 million people.

... and 138,125 tons of CO₂.



Requiring a 138,000 acre
forest (shown here) to offset.

My (Personal) Thoughts

Don't swat flies with hammers

- "Smaller" LLMs have become extremely performant for many SE tasks, so don't kill your wallet (and the planet) using commercial models if they aren't necessary.

People first, not innovation

- If you are making a practical contribution (tool, technique or approach), don't guess what end users might want. (Before running large-scale synthetic experiments,) your work can always benefit from direct feedback from your target audience!

There's no need to reinvent the wheel

- Many non-LLM alternatives already exist to solve SE problems. While LLMs could potentially stand to improve the state-of-the-art in some domains, consider (and measure) their impacts (e.g. environmentally).

But, if you must use LLMs...

Chapter 1: The LLM4SE Benchmarking Landscape

Surveying the Benchmarking Landscape of Large Language Models in Code Intelligence

MOHAMMAD ABDOLLAHI, York University, Canada

RUIXIN ZHANG, York University, Canada

NIMA SHIRI HARZEVILI, York University, Canada

JIHO SHIN, York University, Canada

SONG WANG, York University, Canada

HADI HEMMATI, York University, Canada

Study Scope

General Criteria

Timeframe: Jan. 2020 - Jun. 2025

Study Types: Peer-reviewed (+ recent ArXiv)

Inclusion Criteria:

- Must be applying LLMs for code intelligence tasks.
- Study should present a benchmark dataset.

Exclusion Criteria:

- Do not involve LLM-based evaluation techniques or a lack of focus on benchmark datasets.

Final Result

The authors identified **142 papers** covering **156 unique benchmarks**.

Research Questions

The authors examined 142 papers to investigate...

RQ1: Current Landscape of Benchmark Datasets

Age, task types & complexity, size, tasks, and programming languages.

RQ3: Evaluation Metrics and Techniques

Evaluation criteria, metrics, task alignment, and consistency across datasets.

RQ2: Characteristics and Quality of Benchmark Datasets

Dataset Structure: Formats, labelling schemes and metadata.

RQ4: Challenges and Limitations

Examining limitations highlighted by dataset users for a subset of 14 datasets.

RQ5: Future Directions and Improvements

Recommendations for crafting more complete and realistic datasets, as well as new tasks, multi-modal approaches, etc.

RQ1: What Is the Current Landscape of Benchmark Datasets?

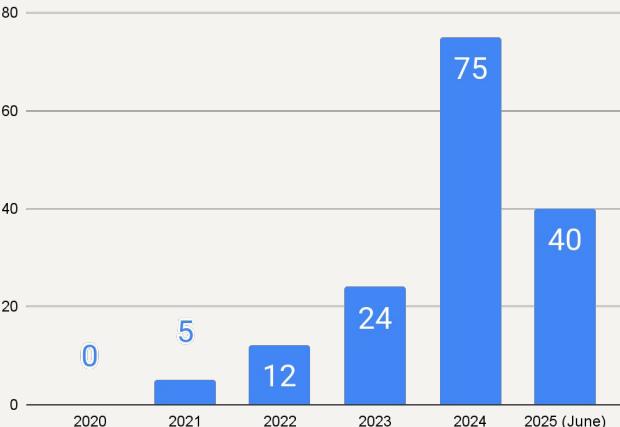
Focus:

- Release timeline
- Programming languages
- Publication venues
- Tasks covered
- Data sources & sizes

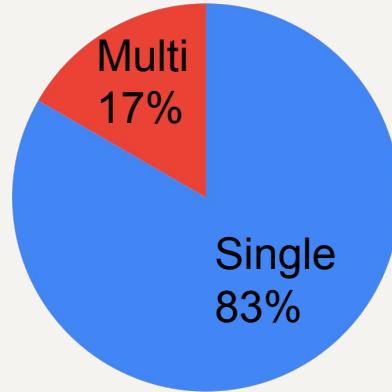
RQ1: Landscape Overview

156 benchmark datasets across **142** papers.

Number of Benchmarks per Year



Single vs. Multi Task Datasets



Programming Languages

Language	# Studies	# Datasets
Python	106	120 (<u>77%</u>)
Java	51	59 (38%)
C++	29	37 (24%)

...

48 unique programming languages

Venues

Venue Topic	# Datasets	
	Conf.	Journ.
ML/AI	36	2
NLP	30	0
SE	21	6
Other	2	2
ArXiv	57	

Venues are important to note, since e.g. ML/AI typically focus less on realism than SE.

Many benchmarks are first published on ArXiv.

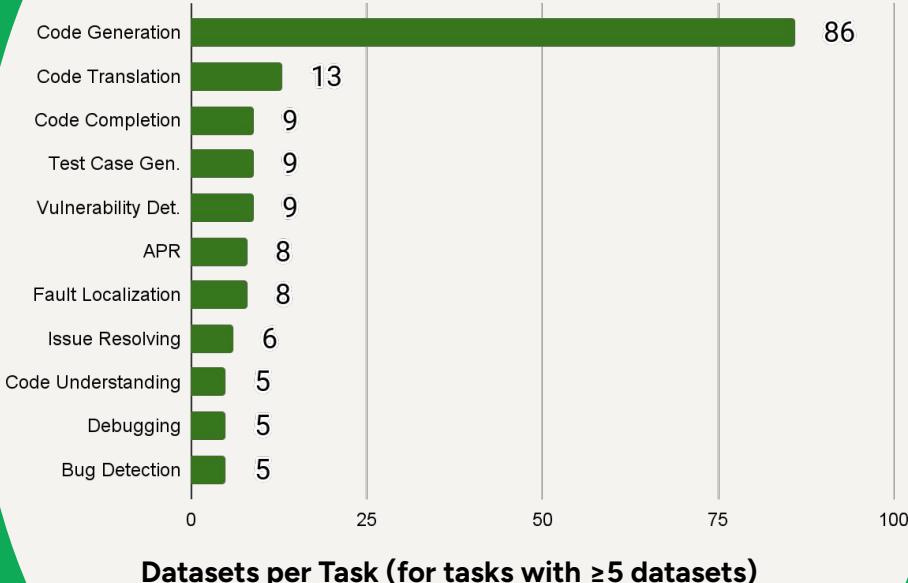
RQ1: Tasks

32 distinct code intelligence tasks identified

Code generation dominates (86 datasets, 55%)

Other common tasks:

- Code translation
- Code completion
- Test generation
- Program repair & debugging
- Vulnerability detection, classification, summarization



RQ1: Sizes

Mean: 1631641

Median: 759

Standard Deviation: 15987155

Dataset sizes vary massively, from as few as 14 samples (ProjectDev) to as many as 189 million (DynaCode).

Dataset Size	Frequency
Small (<500 Samples)	64 (<u>41%</u>)
Medium (500-5k Samples)	55 (35%)
Large (>5k Samples)	37 (24%)

RQ2: Characteristics and Quality of Benchmark Datasets

RQ2: Sources & Quality

Data Sources

- **66 (46%) benchmarks come from GitHub**
 - SWE-bench, RepoEval, ...
- 49 (35%) crafted manually
 - HumanEval, MBPP, ...
- 35 (25%) from competitive coding platforms
- 32 (22.5%) from other existing benchmarks
 - e.g. HumanEval+, SWE-Bench+

Quality Control Strategies

- Manual inspection (32%)
- Automated filtering (e.g. deduplication)
- Hybrid approaches
- **43% of benchmarks had NONE**

“Realism” Strategies

- 49% - Sourcing from “real-world” data
- 18% - Workflow-oriented problems

RQ3: Evaluation Metrics and Techniques

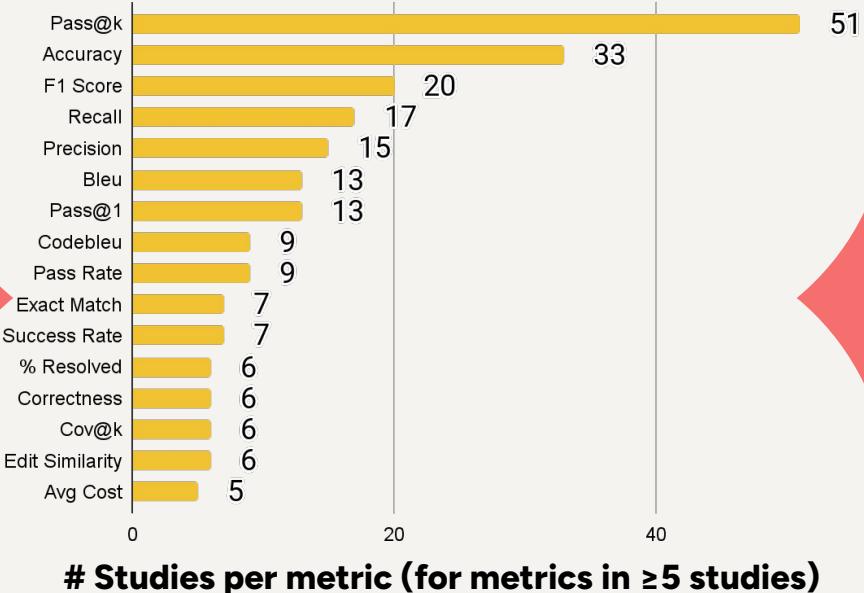
RQ3: Metrics

Pass@k stands out as the most popular (36%).

The authors identified **74 unique metrics**.

Abstracting a little, several strategies emerge:

- Execution-based (e.g. Pass@k, Runtime)
- Similarity checking (e.g. BLEU, BERTScore)
- Human feedback
- LLM-based (i.e. LLM-as-a-Judge)



RQ4: Shortcomings & Limitations

1. Limited Task Complexity and Real-World Relevance

- Too much focus solely on simplified algorithmic or competitive programming tasks.
- Many are limited to **single-function** or **single-file contexts**.

2. Data Quality and Bias Issues

- Many rely on LLMs to generate the tasks with little supervision.
- Lack of difficulty distribution.
- Ambiguous task descriptions.

3. Inadequate Test Coverage

- Popular benchmarks such as HumanEval have been found to have incorrect canonical solutions.
- Weak test coverage leads to plausible but incorrect solutions.

4. Evaluation Limitations

- Most benchmarks only evaluate one aspect of generated code (i.e. correctness), ignoring others.
- Synthetic evaluation pipelines do not accurately reflect the complexity of real-world software.

5. Data Leakage Risks

- The validity of benchmarks using popular open-source repositories can be compromised if their contents are in an evaluated model's training set.

RQ5: Future Directions

The authors identify 6 areas to focus on:

- Multimodal
- Domain-specific
- Large-scale/realism
- Assessing reasoning
- Cutoff aware
- Dynamic

Picking a Benchmark

More details in the full paper!

1. Find out what's out there

- Use surveys like this one to identify all benchmarks aligning with your research questions.

2. Check data quality

- How do the benchmark creators ensure the quality of the tasks?

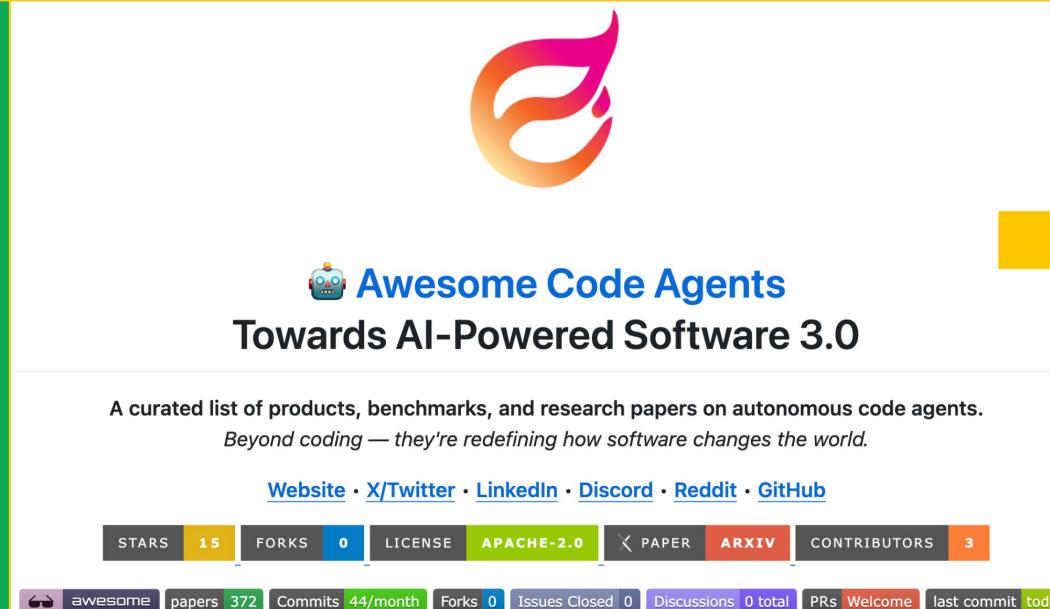
3. Consider evaluation techniques

- What metrics will best convey your arguments?

4. Consider contamination

- Will contamination be a threat to the validity of your study if you use this benchmark?

One More Tip: Living Surveys, e.g.



The screenshot shows the GitHub profile of the 'Awesome Code Agents' repository. The profile features a large, stylized orange and red logo at the top. Below it, the repository name 'Awesome Code Agents' is displayed in a large, bold, blue font, followed by the tagline 'Towards AI-Powered Software 3.0'. A description below the tagline reads: 'A curated list of products, benchmarks, and research papers on autonomous code agents. Beyond coding — they're redefining how software changes the world.' Below this, there are links to the 'Website', 'X/Twitter', 'LinkedIn', 'Discord', 'Reddit', and 'GitHub'. The GitHub stats section shows 15 stars, 0 forks, an Apache-2.0 license, 0 papers, and 3 contributors. The repository has 372 papers, 44 commits per month, 0 forks, 0 issues closed, 0 discussions, 0 total PRs, and a 'Welcome' message for the last commit, which was made today.

Chapter 2: Looking Closer at LLM Usage in ICSE

Reflecting on Empirical and Sustainability Aspects of Software Engineering Research in the Era of Large Language Models

David Williams
University College London
United Kingdom
david.williams.22@ucl.ac.uk

Max Hort
Simula Research Laboratory
Norway
maxh@simula.no

Maria Kechagia
National and Kapodistrian University
of Athens
Greece
makechag@ba.uoa.gr

Aldeida Aleti
Monash University
Australia
aldeida.aleti@monash.edu

Justyna Petke
University College London
United Kingdom
j.petke@ucl.ac.uk

Federica Sarro
University College London
United Kingdom
f.sarro@ucl.ac.uk

Motivation

LLM-based SE Research is Moving Fast

- Surge in research pace since 2022
- Urgency to “be the first”

Replicability & Empirical Rigour

Are researchers:

- still considering traditional SE techniques?
- including enough information to make their work replicable?

Sustainability

We need to consider:

- Is LLM-based research accessible?
- Are some institutions being left behind?

Scope & Method

1. Retrieving all papers published in ICSE main track between 2023-2025 (total of 692).
2. Filtering papers based on AI-related keywords.
3. Manual selection of **empirical studies featuring LLMs**.
4. Extracting information of 177 papers and a survey based on the following research questions...

Research Questions

RQ1: Which LLMs are used in SE research and how are they benchmarked?

- Open vs. commercial
- Which families?
- Non-LLM baselines
- Programming languages

RQ3: How replicable are LLM-based studies?

- Mention of configuration/parameters
- Artefact availability/badges

RQ2: How well do authors tackle the problem of data leakage/contamination?

- Mention of contamination
- Mitigation strategies

RQ4: What are the costs of LLM-based SE research?

- Mention of costs
- Survey distributed to ICSE authors

Finding #1:
In the past 3 years,
the proportion of
LLM-based research
at ICSE has doubled.

Table: Num. papers in ICSE main track 2023-2025

ICSE	# Accepted	# LLM SE
2023	210	32 (15.2%)
2024	236	55 (23.3%)
2025	246	90 (36.6%)
Total	692	177 (25.6%)

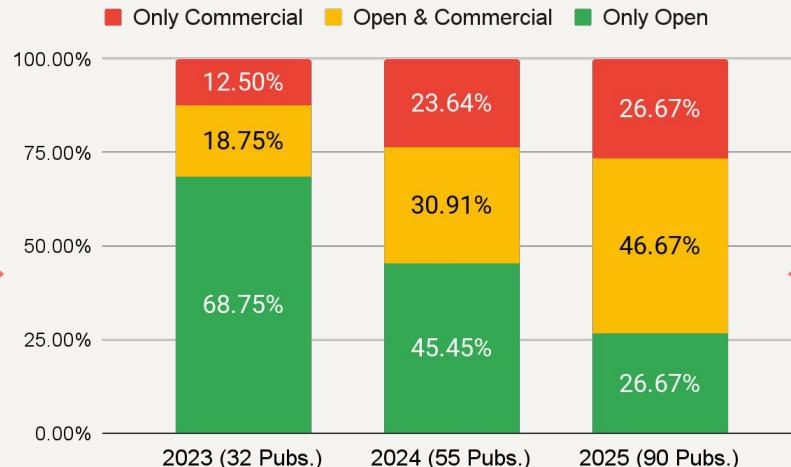
15.2% → 36.6% = \uparrow 2.41x
from 2023 to 2025

RQ1: Models & Benchmarking

RQ1: Models & Benchmarking

Finding #2:

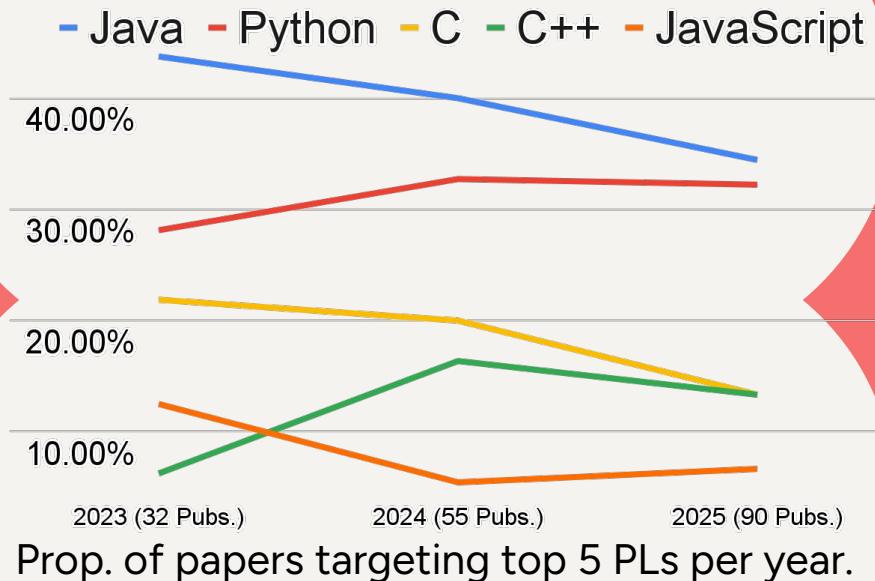
Commercial models are becoming more prevalent.



Prop. of papers using only commercial vs. only open vs. both types of models.

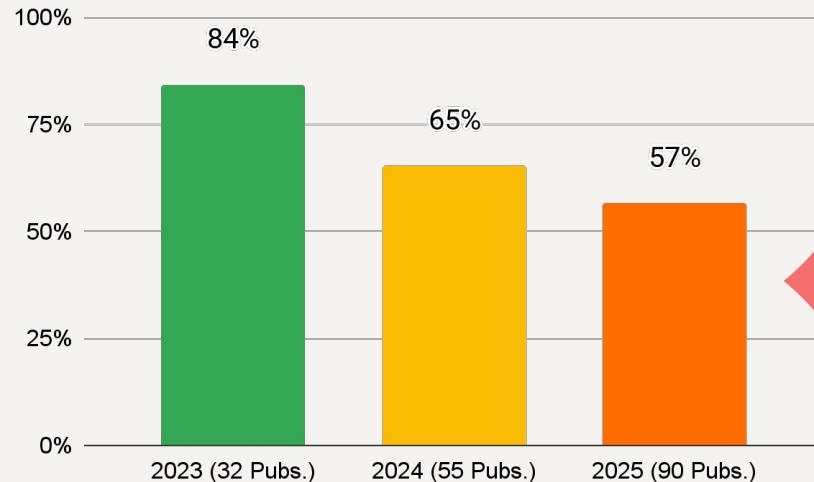
RQ1: Models & Benchmarking

Finding #3:
Languages targeted
are shifting (towards
Python).



RQ1: Models & Benchmarking

Finding #4:
Benchmarking against
non-LLM techniques
is becoming less
popular.



Prop. of papers including non-LLM SE
baselines in their evaluations

RQ2: Contamination

RQ2: Contamination **Finding #5:**

Less than half of papers mention contamination.

Finding #6: Several techniques have been proposed to mitigate contamination.

Reporting

2025: 38 out of 90 (**42.2%**)

2024: 14 out of 55 (**25.5%**)

2023: 6 out of 32 papers (**18.8%**)

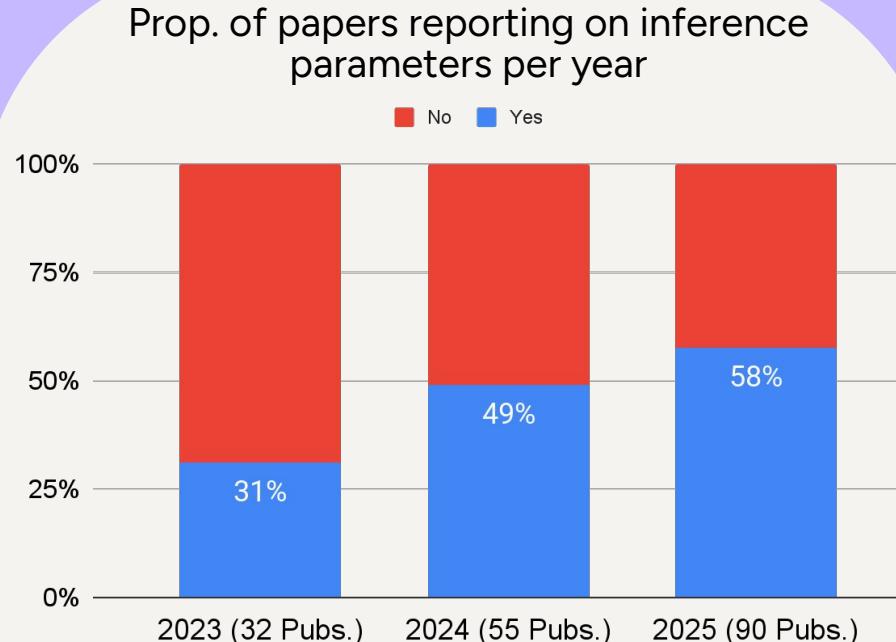
Mitigation Strategies

(Within the papers that mention contamination:)

- None!
- Temporal filtering
- Code obfuscation
- Multi-dataset evaluation & ablation

RQ3: Replicability

RQ3: Replicability
Finding #7:
Despite improvements,
barely half of papers
report on inference
parameters.



Overall : 50.3% report inference parameters.

RQ4: Sustainability

RQ4: Sustainability Finding #8:
Costs are rarely reported, and researchers are nervous about sustaining them.

Cost Reporting

Cost Type	# Papers (Prop.)
Hardware	89 (50%)
Time	36 (20%)
Financial	18 (10%)
In/Out Tokens	12 (7%)
Energy/CO2	None

User Study (57 Authors)

"How likely are you to keep using __ models in the next 12 months?"

- Commercial: 89%
- Open: 95%

"Will you be able to continue sustaining the costs?"

- Commercial:
 - 65% "Uncertain"
 - 9% "No"
- Open:
 - 65% "Yes"

If I had to give a few suggestions...

Read more in the ArXiv Preprint!

Benchmark using open models (too).

- Will your results still be replicable when commercial APIs deprecate the closed model you used?
- Other researchers may be interested in your work, but may not have the finances to try it out.

If a non-LLM technique exists, try it!

- In using LLMs, are you ignoring a rich prior literature on viable non-LLM techniques?

Report every parameter/prompt you can.

- How can anyone replicate your work if they can't configure the models in the same way?
- If there is no room due to conference page limitations, include these in a separate doc reporting on parameters, prompts used, etc.

If you can, measure and report costs!

- Help future researchers decide if your technique is financially/computationally viable for their work.

**But, in case you don't
want to take my advice...**

Chapter 3: Guidelines for Empirical Studies

Guidelines for Empirical Studies in Software Engineering involving Large Language Models

Sebastian Baltes
University of Bayreuth, Germany
sebastian.baltes@uni-bayreuth.de

Marvin Muñoz Barón
Chunyang Chen
TU Munich, Germany
{marvin.munoz-baron, chunyang.chen}@tum.de

Neil Ernst
University of Victoria, Canada
nernst@uvic.ca

Davide Fucci
BTH, Sweden
davide.fucci@bth.se

Mircea Lungu
IT University Copenhagen, Denmark
mlun@itu.dk

Rijnard van Tonder
Independent, Antigua and Barbuda
rvantonder@gmail.com

Florian Angermeir
fortiss, Germany
BTH, Sweden
angermeir@fortiss.org

Lukas Böhme
Hasso-Plattner-Institut, Germany
University of Potsdam, Germany
lukas.boehme@hpi.de

Davide Falessi
University of Rome Tor Vergata, Italy
falessi@ing.uniroma2.it

Marcos Kalinowski
PUC Rio de Janeiro, Brazil
kalinowski@inf.puc-rio.br

Lutz Prechelt
Freie Universität Berlin, Germany
prechelt@inf.fu-berlin.de

Christoph Treude
SMU, Singapore
ctreude@smu.edu.sg

Chetan Arora
Monash University, Australia
chetan.arora@monash.edu

Fabio Calefato
University of Bari, Italy
fabio.calefato@uniba.it

Brian Fitzgerald
Lero, Ireland
University of Limerick, Ireland
brian.fitzgerald@ul.ie

Stefano Lambiase
Daniel Russo
Aalborg University, Denmark
{stla, daniel.russo}@cs.aau.dk

Paul Ralph
Dalhousie University, Canada
paulralph@dal.ca

Stefan Wagner
TU Munich, Germany
stefan.wagner@tum.de

Approach & Scope

- Collaborative effort starting at ISERN 2024, followed by a position paper at WSESE 2025.
- Authors focus on textual models.

Taxonomy of LLM-Based SE Study Types

1. LLMs as Tools for SE Researchers
 - a. LLMs as Annotators
 - b. LLMs as Judges
 - c. LLMs for Synthesis
 - d. LLMs as Subjects
2. LLMs as Tools for Software Engineers
 - a. Studying LLM Usage in SE
 - b. LLMs for New SE Tools
 - c. Benchmarking LLMs for SE Tasks

8 Must/Should Guidelines for Using LLMs in Empirical Studies in SE

Guideline #1: LLM Usage and Role

MUST report:

Whether an LLM was used at all

SHOULD report:

The purpose, automated tasks and expected benefits.

Guideline #2: Model Version, Configuration, & Customisations

Example:

"We integrated a gpt-4 model in version 0125-Preview via the Azure OpenAI Service, and configured it with a temperature of 0.7, top_p set to 0.8, a maximum token length of 512, and the seed value 23487. We ran our experiment on 10th January 2025 (system fingerprint fp_6b68a8204b).

MUST Report

- Exact LLM model/tool version.
- Configuration parameters
- Experiment dates

If fine-tuning:

- Fine-tuning goals
- Datasets
- Procedure

SHOULD Report

- Default parameters
- Reasoning for model choices
- Comparisons of base and fine-tuned models
- Fine-tuning data & weights

Guideline #3: Tool Architecture Beyond Models

MUST Report

- Full architecture of novel LLM-based tools.
- Hosting setup/hardware
- Confidential/proprietary components (as a threat to reproducibility)

If autonomous agents are used:

- Agent roles
- Reasoning frameworks
- Communication flows

SHOULD Include

- Architectural diagrams
- Justification for design decisions

***MUST* Report**

- ALL PROMPTS
 - Structure, formatting, dynamic components (variables)
- Token optimisation techniques
- Prompt reuse across models and configs

For dynamically/user generated* prompts:

- Generation and collection process

Guideline #4: Prompts, their Development, and Interaction Logs

***SHOULD* Report**

- Prompt revisions
- Pilot-testing insights
- Full interaction logs (prompts and responses)*

*if privacy and confidentiality can be ensured

Guideline #5: Human Validation for LLM Outputs

SHOULD Report

- Consideration of human validation early in the study design
- Measuring Instruments
- Results of a statistical power analysis
- Mitigation of confounding factors

When aggregating LLM judgements:

- Methods and rationale
- Inter-rater agreements

Guideline #6:

Use an Open LLM as a Baseline

When using commercial LLMs, authors...

SHOULD Report

- Results using an open LLM as a baseline
- Inter-model agreement
- Full step-by-step replication instructions as part of the supplementary material.

Guideline #7: Suitable Baselines, Benchmarks, and Metrics

MUST Report

- Justification for the choice of benchmark.
- Why the metrics are suitable for the specific study.

SHOULD Report

- Summary of benchmark structure, task types, limitations.
- Results of non-LLM baselines.
- Results of experiment repetitions AND result distribution.

Guideline #8: Limitations and Mitigations

MUST Report

- Study limitations:
 - Impact of non-determinism
 - Generalisability constraints
- Whether generalisation across models was measured (& differences observed)
- Model outputs
- Sensitive data handling, ethics approvals
- Justification for using LLMs at all

Guidelines in a Nutshell

Full paper for in-depth examples!

1. Say if you're actually using LLMs.
2. Versions, configurations, and customisations.
3. How the LLM interacts with other components.
4. What prompts did you use?
5. Involve people to validate LLM outputs.
6. Use open models (as well as commercial)!
7. Pick your benchmarks (and metrics) wisely.
8. Highlight limitations (contamination, generalisability, etc.) and how you mitigated them.

Thank You!

Dave Williams

davejjwilliams.github.io

david.williams.22@ucl.ac.uk

Paper 0: How Hungry is AI?

Paper 1: Benchmarking
LLM4SE Landscape

Paper 2: Reflecting on LLMs
in ICSE 2023-2025

Paper 3: Guidelines for
LLM-based SE Research